RECORD

$B \log .31$
Rm9-A-17

Offic of Mathematicel Posearch National cus tibules of Health Bethesda, Md. 20014

Home tetpphone WH-6-4455
Home addors 11420 LUXMANOR RD,

$$
\begin{aligned}
& \text { ROCKVILLE, MD。 } \\
& 20852
\end{aligned}
$$

Book 8
Research \& Computation Diary
Continued From Book 7 on 12/15/65
Past few months hare ben very active computing with SAAM 22
Produced serena summer charts not in book 7 program

See p. 30 of this book for recap + stock taking.

$$
2 \cdot)+1
$$

sempite nti (amunel)

12/15/65
Recerivel computer onpmo of 10 dechs put in late 12/13/65

$$
T^{*}=.092
$$

655. 169 TRNSG, Oldserios, lut with moritoring of cursent p. 181 look 7 cpt. 16 is a summer which monitoos symoptric current in (6)

17 " " " other " (fint (6)
18 " " wet curnei into (1) from (2)
in (1) peoh not ginite reoked by max $T=.45$
in (6) peok $=.279359$ at $T=.19$
(16) pech symuptic curnent $=7.83$ at $T E .07$ droppsiadnely
(17) other curverif pon (6) peakeat $-\% .36$ at $T=.05$ $T_{17,6}$ shoved

$$
+3.54 \text { at } T=.4 \text { ho } 51
$$

(18) not cunainits Ofron (2) peatos .3721 at $T=.27$
$655.149 \quad{ }^{17}, 4$ should hove been -5%
in(1) pealk $=.10$ at $T=.44$
$\begin{array}{lll}(4) & .162186 & .20 \\ (16) & 4.42266 & .08\end{array}$
(18) peds $=488$ of $T=017$
655.554 fornd $C=253.764$ in (5)

$$
\text { to gike jusppeak }=.05025 \text { in (1) at } T=.58
$$

prah -m (5) was -.09266 at $T=.14$
645.121 found $\varepsilon=4.4078$ in (2)

$$
T^{*}=.04 \text { mohes spsppeah }=.10 \mathrm{~m} \text { (1) at } T=.16
$$

peakin(2) was. 11216 at $T=$: 11

However, f dou't sesiorsly behone $\lambda_{0,4}=80.23$;f used thiscose becanse that the necessary I.C. from a previons Grun f conldgè steodystatbobres for reduced RN. Presumoby, anour rect - onght to be roughly proportional to the electrotonic spread volvess, al though one coned assme a completely umiforn Ranchange.
$15 / 15 / 65$
645.100 to furidpedk used $E=33.64 \mathrm{~m}$ (10)

- Gotpeak ni (1) $=.058445$ at $T=.86$

$$
(10)=.63 \quad .09
$$

645.180 uned $\varepsilon=17.07$ in 8
$\begin{aligned} \text { got peob in (8) of . } 05154 \text { of } T & =.73 \\ \text { (8) of } 31994 \quad T & =.09\end{aligned}$
' 655.910 TRNS E tg mi (1) ung odtrens 7 T $=.092$

$$
\begin{aligned}
& \text { put } \varepsilon=1.75=\lambda_{0,16} \\
& \text { pno } g=13.87=\lambda_{0,15}
\end{aligned}
$$

got peak $=.0124$ at $T=.19$ wherasas Edene gine. 10 at $T=.22$ goleme gi4 $=05$ at $T=20$
655.940 TPNS $\varepsilon \times g$ in 4 put $\varepsilon=5.01$

$$
\begin{aligned}
& g=72.24 \\
& \text { got peole }=-.014608 \mathrm{~min} \text { (1) at } T=.45 \\
& \text { peak } \min (4) \text { is }-.022438 \text { at } T=.16
\end{aligned}
$$

$\varepsilon=6.6 \mathrm{~mm}(3)$ TRNS distat 12% of $T=29$

654.119 Squere fif phos Anomp Rectinin (4) $\lambda_{0,4}=80.23$ peakin (11) sman annoat : 107
wivchis petty cloreto obyecturs. Need to clock rate of rise. sisurficontly inicreased.

Kay remarhed that mory readens would at frist he repelledly the lorge ε vahes prostulate i the peripheny.
My reply is that this is a reaction one frobobly should anticipate kypowith to the large E focter implied ly aetrion pobereal Dald.
Philalso nentionod neuromisular jom
Crefurtherpount: I need bss E when the
area is micreased. Klikesto cous area is nicreased. Klikesto cousider
larger areas.
$12 / 16 / 65$
Wohbol up three comparisons hotueen slow 4 fort ε tromients, thene were in ppts (1) aid (4) of chavio ofive, of cpt (2) ochani oftem. Preented indircussion with K., Pul + Bob Burke. Ceso pesented the EJ results \& the anom reg. sesults.
12/87/65 necap.
 d result with brieffiscussion (b) anom rect.ppper withods s renults with hiof disanawon, (C) my theoratical sminalation esults, (d) a joint prper pulluoj it all toge ther. Awolso hove Bob Burke's, wiw wich he presents (i) citiracton, usvally abmoo hinear, whith he now takes
 of ovohed apsp, connon features as wellas slopedofferences, (iii) mimiateres shour) ermere variationy betc sungest differen locations, (iv) repeating anigle offerents which indicate constoncy of temporal dirpersion aspect for a smigle cluster(v)?

K sard tha hedid not behare discussian coneld all he deffered to joint poper. Aggreed that the main Thrust ofeach proper would hove to be bought out in that poper. He orked that we start to outhire the joint poper. Problem heguis to arise obout how much overlap There will he in the several discussions. A am legienting to suspect that I should begin to work hard on nny oum poper - it may turm out that the joint poper will be scropped \& replaced lyy cross references between the popers. Actually, my original suggestion had been with regard to the electrical versus chemical pait of the story. But the most fristful thing may be cross-referenung detween the separate popers. Their ongwial concern, ofcouse, was veed for the sinubled renits. My concem, now, shoald he to write these up as brathy as posithe of to list a fullsumany of all the conclusions that could be drawin from these simutation studies. At this time, trhouldo orly those alditional compmations that are really needed.

Previous theoretical studies hove presented swmulated synaptic potentials that would be expected at a neuron soma in response to square conductance change
(from notes dated $12 / 27 / 65$)
Predictions o generalizations from the completed effects of synaptic conductance change at different soma-dendritic locations.

Synaptic potential computations for various....
Characterostios of syny tic potertiils computed for vervions soma doubirtic distulution of membrane condretance change.

Distingnishiy between synoptic potentials generated at different locations.

Distinctions between
$12 / 17 / 65$
Kinds p results to he presented
Assume chsencect anomalous rectification
I
(A) linearity from 0.10 to 0.20 app approx war soma, off farther out.
(B) livesity of ES poor when at common site, bette when separated. into posit tres.
(C) Shape constancy is sham ln my plots.

II (D) $\left\{\begin{array}{l}\text { change in slopes with pert location } \\ \text { " " visions At .i. } \\ \text { also peak in the remote location. }\end{array}\right.$
III Cerenability of Conductance change
IV Compere time course of E, of symptric current, of V at pert apt, of somor-dendritic current, and of epsfot soma.
Porsitletitles
Quantitative Study of Simulated Synoptic Potentials.
Dendritic location effect upon computed synoptic locations
Effects of dafifdesent soma-dendritic locations upon computed responses to synoptic conductance. charges.
Insights obtained from coniputed synaptic conductance - changes at different soma-dendritic locations.

Predicted Effect at Soma synaptic conshutiona changes at varians sorna-deubitic locahons.

煵荊

12/17/65
Received Walter Freman's manuscupt- - glanced at it, lent havent streergth to stacty it now. Felt bihe opennj Pandonas bor.

Perhops plan to popare nost essential dechs for funther cales. Fust, chech one point alredy avaitable.
? Do the epsp of the 556 series hone the same time
course as The net distortion (q ? 18$)$ of the 656 sorie?. 556.210 ksp
.40 656,210 divt (18)
tinie of peak
 alvo for pert ini(1)
now look os pert in (5)

$$
\begin{equation*}
556.510 \mathrm{epsp} \tag{18}
\end{equation*}
$$

thine o/peck
.95
656.513

$$
.45+
$$

$$
1.73
$$

$$
.25
$$

$$
\begin{aligned}
& 2.0-10=1.0 \\
& 1.45-10=.45 \\
& 2.75-1 .=1075 \\
& 1.25-10=.25
\end{aligned}
$$

also ogrees well
\# This has very significont conseqnence: Because this distort. closely follons spsp thie cours, it very obvionly das not sepresent Etwine course at all. This is rather doffererif from The AcCimpelance approach which anmes that it conget actualtivi counseof E. Actually Aic. sterdys sate does not eyrist. A pointed thusoir to K. He agpees itut seys you can

$12 / 17 / 65$
Hove juitcheeked (seepp 187-188 of book 7) The rel. amplitude of sinusoidal approy steady state against, step at $T=1,0$. Fuad the \% valves are lower for sinusoidal.

Now decided to look of step values for $T<1.0$ Valves ore available for the 5 chatahins 656 series.
 agresproty well when these odd pts are compared with chania/f tine.
oddintiof
Sinustridal
100
55 30
17.5
p. 18 Book 7 Semis to corves to about $T=07$
secobo p. $37-38$
below
oil

48189. 84to.

$$
8 p+00_{0}+5100208080
$$

$$
\left.180000_{0}+8180\right)_{0}
$$

$12 / 17 / 65$
Decks to prepare $(12 / 20 / 65$ - 5 pew hoo tho dor with Dr 7 florio) $)$
655.009 pair needs appropriate σ set to -5%
also consider plotting scales q Kappas.
$\left.\begin{array}{l}645.101 \\ 645.181\end{array}\right\}$ fits

$$
\begin{array}{ll}
645.101 & (12 / 20 / 65) \\
645.181 & (12 / 20 / 65) \\
645.111 & (12 / 20 / 65)
\end{array}
$$

655.900 EJ could he charged to two chanis of five
546.150 to he peppered
646.120 to he resubmitted $646.121 \quad(12 / 20 / 65)$
$\left.\begin{array}{r}646.130 \\ .140\end{array}\right\}$ can now he prepared.

This hofprey slope $=.287$
65.312 Suinsoidal, volves tobilatap oups. 14 appear to be very close to steady state
645.111 कt (1) with fost TRNS \&

$$
\text { dd } \varepsilon=1.75 \text { goe epsp peok }=.0656 \text { at } T=.11
$$

$$
\text { Fit is, honewn beriy done at } T=.12
$$

$$
.0100695
$$

Tound $E_{\text {prak }}=2.762$ gives essp $=.01$ at $T=.11$ nealy lineor

$$
\begin{equation*}
\therefore \text { correct } t 2.74=\varepsilon \tag{1}
\end{equation*}
$$

Alsoneed to mosure slopes.
Slepe at sis yv $1 / 2$ may is 1.63

$$
\therefore \frac{y}{v m} \frac{d y}{d t}=16.3
$$

645.101 cpt(10) with fort TRNS E

$$
\begin{array}{r}
\varepsilon_{\text {pesh }}=100 \text { wos not enough } \\
\text { gorespsp peak }=.0847563 \\
\text { at } T=.86 \\
\text { in git(10) } \quad \text { beh }=.8607 \text { at } T=.07
\end{array}
$$

$$
\text { peeh }=.8607 \text { at } T=.07
$$

645.181 found Epeeh $=49.867$ in (8)
sius epsppeak $=.1$ at $T=.73$
in (8)prah $=.60245$ at $T=.08$
(x) 14
$3 \times \sqrt{3}-1+-2 x+1)+25+11$.

$$
85-x+c
$$

$$
\begin{aligned}
& \text { cordye80 } \\
& \square \\
& 104+8.828 \\
& 8,010=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hes e, \& } \\
& \text { E.J1 }
\end{aligned}
$$

$12 / 21 / 65$
646.121 three chants. Hod cordersor
pent in

$$
\begin{aligned}
& 646.122 \\
& 646.130 \\
& \left.\begin{array}{l}
655.149 \\
655.169
\end{array}\right\} \text { redo with plot } \\
& 6 \text { connects } \sigma=51 .
\end{aligned}
$$

Need to measure slopes for Thursday session with others.

$$
12 / 22 / 65
$$

pion ni
645.182
(8) more tine

$$
645.102
$$

$$
645.130
$$

(10) longer max \mathcal{E}

Got bode top four late on $12 / 22 / 65$
11 1 dower three $111112 / 23 / 65$
On 12/22/65 did nueasurnig of 645.1 series and abr of 556.1 bs 546.1 series for a comparison chart.

Test meosurability of condnetance charge dist uniformg ouer the whole newron.

Also ty to sinumutate Bob-Eurke's special epsp pair, see nota

Goimpoper Dunie dianmoonwith Pill Pbobburke Foday
The overall question is to aszess how well the data can le completely accounted for ly spotial doflerences iva nembrane coudnctance distritiation.
Qro, ask ifany dorit fit - do they poin to ebetrial sypapses? Also, hour barically differe are electrical t chemical syvapses.
Nactions of foint papor
I- $\Delta Z \frac{\text { Sensitiity of nipedance neasurement of inflnence }}{\text { electrical os chenical }}$ ofdendritic lowo electrical oschemical ofdendriticlocoo olocation.

II-AR (1) variable $\frac{d V}{d t}$ op ep p
(2) voriable effect \& p polerizing. current in epsp

III PSP intraction of two cousse
compratment offect an tine conse is. temporal dis persion
Compritimental effect on interaction quantitature.
\square

$\frac{23+9-3 \cdot 5}{4}$
. $\operatorname{sith} x+5+5$
$12 / 23 / 65$
646.130 - Threeshotchanis with $T^{*}=.04$

$$
\begin{array}{rr}
\text { with } \varepsilon=9.52 \text { peak in (3) } & \text { at } T=.42 \\
\text { stsiticontral (11) } & .3435548 \\
\text { pert in (1) } & .2624906 \\
\hline .0810642 & 17 \text { is } 0.283930 \\
& 24.3 \%
\end{array}
$$

$$
\% \text { divtuten: } 3.54 \%
$$

646.122 with $\varepsilon=4.2545 \mathrm{~min}(2)$

$$
T=.26
$$

$$
\begin{array}{r}
\text { contriol. } 3435548 \\
\text { peet } \begin{array}{r}
.2323766 \\
.1111782 \\
32.4 \%
\end{array}
\end{array}
$$

$$
\text { coutiol : } 285327
$$

$$
\text { (17) } \cdot 268450
$$

$$
\text { (18) } .016877
$$

5.91%
655.149 TRNSG Monito Current

Data points exceed 250 in mulor.
655 . 169 B son, lut plomwns seale way off.

in (1) peak $=.1001$	at $T=.62$		
i(6) (19)	.27936	.19	\times Koppa $=.05587$
in (16)	7.83	.07	$\times 1566$
in (17)	-6.23	.11	-.1246
in (18)	.3719	.26	.0744

Need to satup
$130 / 65$
$12 / 30 / 65$
$\sqrt{645} .1$
$645.140 \quad$ at $T=.32$ stav woth $\varepsilon=5.01$
$9.845 .160 \quad$ at $T=.50 \quad 9.86$
$\sqrt{645.102(10) ~ f o l l o w e d ~ o n t, ~ w o t h e n ~ f i t i o r ~ p l o t ~ t o ~}$
$661.143 \bmod$ of $655.149 B$ Monitor Cumen
651.163
$\checkmark 662.001$ Three Chanis EPSP SUAM
These dil wot (seep.26)
so mintil
nooming of $1 / 3 / 66$
$12 / 23 / 65$
645.130 Found $\varepsilon=6.965$ in (3)
gives efsppeak $=.101139$ in (1)
at $T=.22$
pedeni(3) is $.155 / 4$ at $T=.09$
645.182 goes on to falling hof max that was mirsed lefore.
645.102 cpt (10) $\varepsilon=150 \mathrm{mi}$ (10) reodut. 0925 mi (1)

$$
\text { as } T=.86
$$

Foumt $\Sigma=234.35 \mathrm{mi}$

$$
\text { to get } 100016 \text {. }
$$

$$
\text { at } T=.86
$$

peak min (10) is. 9403 at $T=.06$
pech in (14) 1.0 . 04
Need more time withan fit to get fellniy half ruay

$$
48+(88101.0
$$

$12 / 27 / 65$
This week, thy to concentrate on wsiting a droft on the smiulated experiments for the joint series. Inomnars. also, in ofternoons, cotchup correspandence + set up a few nore compritations. esp. $F \angle D+M G$ of unform esss \& mannrobility of 6
12 130/65 Got several letters worithen sto
kitasato
Brookd
Elias
Ghent
12/30/65 settup comprutation dechs - seep. 23 .
Narseries 662. Three Chanis EPSP SUMS

$$
\begin{align*}
& \lambda_{i j} y=6.25 \\
& I_{1} C_{1}=1.0 \mathrm{~min} \text { (16) at } 2.71828 \tag{17}
\end{align*}
$$

662.001
telatel $\quad \lambda_{18,17}=\lambda_{0,18}=25$. isteharin was toth
 Sumune 20 , has sn' \circ 'fot (11)

$\lambda_{2,16}$	10	Qdepon 18
$\lambda_{2,16}$	10	$" 1$
$\lambda_{19,2}$	10	$" 1$
$\lambda_{19,7}$	10	$"$
$\lambda_{5,16}$	5_{0}	$"$
$\lambda_{15,16}$	50	4
$\lambda_{19,5}$	50	4
$\lambda_{19}, 15$	5	4
$\lambda_{0,16}$	-12	4

Datapantsmi 10, 6., 11., 20. eoch 200. .04 55.
based on 65.311
663.031 TwoChavis-Pert. Sinus.

13614 gerest sminsorital I.C.in $(13)=1$.

$$
\begin{aligned}
& \lambda 1,13=1.0 \\
& \lambda 6,13=1.0 \\
& \lambda_{0}, 13=1.1416 \\
& \lambda_{0}, 14=-3.1416 \\
& \lambda_{0}, 14=+3.1416 \\
& \lambda_{14}, 13=3.1416
\end{aligned}
$$

goen $\lambda_{17,3}$ deppulson Q 16
TRNS G generatel ofter
Then I,C $\min (15)=2.71828$
all thetraid $\lambda_{16,15}=25$. $x_{0,16}=25$.
afte, T.C. $\lambda_{17,3} \quad 9.52$

$$
1 / 3 / 66
$$

Sctup 546.150 shot chain with T^{*} est at .81
646.140
546.141 zeroiteratu. with $\varepsilon=19.6$
663.031 see left suigle ept. Seefolont.
(4)

Let $I_{1} C_{1}=\ln$ in (2) be E_{ϵ}

$$
\begin{equation*}
I_{1} C_{1}=2.71828 \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& \lambda_{4,3}=25, \\
& \lambda_{0,4}=25 \\
& \lambda_{1,2} \\
& \lambda_{5,1} \\
& \lambda_{0,2} \\
& \lambda_{1,2} \\
& \lambda_{3,2}
\end{aligned}
$$

\qquad
41 41
$\lambda_{0,5}$

$$
1 .
$$

1/4/66
Corresponding Chorts usidin discunnows with Plil K. Fook
Quer ochfor

$$
\begin{aligned}
& 654.2 \\
& 654.1 \\
& 654.5 \\
& 652.2 \\
& 652 . \rightarrow 1,2,5 \text { combinisd } \\
& 655.1 \\
& 655.5 \\
& 653.1 \% .5 \text { combined } \\
& 654.108 \\
& 556+656 \text { shartchain series }
\end{aligned}
$$

$$
645.1
$$

546.1 verous 556.1 comperisan

654 . 1 urn 655.1 comporison
suall grogles
654100 series
655.100 series
lange groples -tracuizs
seep. 161 Pertmen, serpome n(1) squere vessus slow TRNS E eftook 7 ?
(10)
(1)
$1 / 4 / 66$
Summary
Here we list allof the recen computation sesies and then goon to surver the summary ehorts that wereprepored durniy the last two months. "Reper deo boch to p. 60 of Book 7 and topp. 135 and 146 of Book?
Square conductonce change series
654 . begun orignally as 65.400 on of 65.100
654.200 Square Efit for epsp peed $=0.20$ in (1)

Donefor pert. in $1,2,3,4,6,8$
652.200 Distotion of Cusent step resporse by abone square G values Dorefor pest in 1, 2, 3, 4, 6, 8
654.100 Square E fit for epspppeak $=0.10$ ni (1)
sec ac88atlothom Dove for fert in $1,2,3,4,6,8,10$
652.100 Distotion of Cursent Stop repporise by therespume Gorlues

$$
\text { in } 1,2,3,4,6,8,10
$$

654.500 Squar of fit for ipsp peals $=-0.05$ in (1)
Done for pert in $1,2,3,4$

$$
\text { Doce for pert in } 1,2,3,4
$$

652.500 Distortion of Cursent Step reppoure in these spure Godies

Slow Transient Conlutance change series $T^{*}=0.092$ seep. 170 book 7 655.100 TRNS \& fit for epsp peak $=0.10$ in (1)

Done for $1,2,3,4,6,8,10$
653. 100 Distation of Current Step responsely obore TRNS G Done for $1,2,3,4,6,8,10$
655.500 TRNS of fit for ipsp peak $=0.05$ in (1) Done for $1,2,3,4,5$
653.500 Distation Currew Step responsely oboveTRNS G

$$
\text { 655.108 TRNS \& Dov for } 1,2,3,4
$$

654. 108 Square E upou steody state hyperpol $(-.3771) \quad 1,2,3,4,6,8$

Now mathematiciom im prospanminex sector.
Richard Shrager
$\operatorname{Pm}_{m} 2220$, Ext. 63626
brought aromit la Gose
will buld up fortran IV librey
lata phone call from
jomes Kiefer 66563 interestod in programuniz.

1/4/66 Sunnory Continned RNS Sheries Shoot (5) Chain TRNSE fit epsppeak $=010$ Done 1,2, 3, 4,5
656. Three chaim method usugrs summes to get distortion Done $1,2,3,4,5$
TRANSIENT E, $T^{*}=.04$ see p.170 of bok 7 546 . veries short (5) Chain TRNS \& fit opsp pech $=010$ Done 1, $2,3,4,5$
646 . series Threechain nethot uonij a umuess to get distotion Dove 1, 2, 3
645. I sesien long chain fost TRNS E fit epspprob $=010$ Dow 1,
655.900 ThNS Etg seep. 184% ooth 7 a p. 4 here
65.310 Now Sinusoilal series with period $=2 \tau$ 663. Two Chain - Pesturibel Sinusoidal 11 p. 27
662. New Three Chanis - EPSP Sums p. 26

654.109 Gnom. Recto smimulations. 0.4

Peprerechart
Norshove 645.1 bisth per. in (2), (8), (10), (1) (4), (6), (3)

Put in (late 1/4/66)
$\left.\begin{array}{l}66.164 \\ 662.002\end{array}\right\}$ with old SAAM 22
wish should plot correctly.

1/4/66 This oftermoon, figat back remelts setep, $12 / 30 / 65-$ seep. 23

$$
645.140 \text { TRNS G Mod } T^{*}=.04
$$

$$
\text { intial Epeck of } 5.01 \text { mi }(4) \text { gone } .0524 \text { miO A T T } .29
$$

$$
\text { fornd } \varepsilon=10.60 \text { in }(4) \quad .1007 \quad T=.29
$$

pechmi(4) is. 22 at $T=.09$
645.102 un of $\varepsilon=234$.

$$
\begin{array}{r}
\text { got epsp }=.0999926 \text { mio at } T=.86 \tag{10}\\
\text { ample sem }
\end{array}
$$ ample sun time

645.160 intial Epah $=9.86$ in (6) gave. $0504 \sim=0.9 T=.47$

$$
\text { found } \varepsilon=24.39 \text { ni } 6 \cdot 10042 \quad T=.47
$$

peak ani(6) in. 4054 at $T=.08$
661.143 Slow TRNS - Monitor Current.
\rightarrow woproblans $\sqrt{1,4} 49 \sqrt{17,6}$ sot mitechargel lymistoke Qeso, plothing sabrontino miskehabing. 662.001 Threechain epsp sunnt. fost TRNS for $\sum_{\varepsilon=5}=5$ in (5) goops in setup

This point was discuned with Pollen tux for their pyraniclal cells.
Also, This foin was, t believe, neglected in the Kitasato popery o
This should we dealt with in ny review Could refer bods to slide What we use farm my 1958 Jedilsoc. Presentation.

1/5/66
Spentwher of day going one gordon's material a writing hin a letter, catchos up + comnentingon his reefer ni th of orson
Did followiz calculation for story state ebcholonic decrement from offatory glomerule to mitral bong Use iq. 3 of 1959 popes $\frac{V_{0}}{V_{1}}=\cosh \left(L_{0} / x_{0}\right)+B_{1} \sinh \left(L_{0} / \lambda_{0}\right)$ with directions reversed: ie $x_{0}=$ glomerulus

$$
\text { and } B_{1}=\frac{\sum d_{s}^{3 / 2} \tanh \left(L_{s} / \lambda_{s}\right)}{d_{0}^{3 / 2}}
$$

Where numerator represents the secondary dendrites.
Suppose $L_{s} / \lambda_{s}=1.0$, that $d_{s}=\frac{1}{2} d_{0}^{2}$ o that $N_{s}=4$
Then

$$
\begin{aligned}
B_{1} & =\frac{4(.76)}{2^{3 / 2}}=\frac{3.04}{2.83}=1.075 \\
& =\sqrt{2}(.76)=1.075 \approx 1.0
\end{aligned}
$$

But, if $d_{s}=d_{0}$, then get $B_{1}=3.04 \simeq 3$.
Then, fo ho ho $\lambda_{0}=1$, get $\frac{V_{0}}{V_{1}}=1.543+3(1.175)=5.07$

$$
=2.69 \text { compared with } 1.65 \text { for } B_{1}=1
$$

$$
\begin{aligned}
& 663.031 \\
& 645.001 \\
& 646.140 \\
& 546.141 \\
& 546.150
\end{aligned}
$$

$$
\begin{aligned}
& 663.032 \\
& 645.001 B
\end{aligned}
$$

sel amplitudes
100

Setup 663.032
with new I.C. set as $T=8.0$ volues at right

1/6/66 momiz onsick leove
aftrinoon, goover secon computer onprito.
663.031 Twochain pertisminsoidel
wosked, lus nept twine hove less then 250 data
pomits
Found steody stote bolula
extromumn

$$
\begin{gathered}
T=8.0 \\
(46) \cdot 1097 \\
247) .02788 \\
348)=00681 \\
499=.01816 \\
59(0)=.02058
\end{gathered}
$$

.16288 at 8.25
.08931 at 8.40
.04906 of 8.55
30
Which in 546.13
.02971 at 8.70

$$
\begin{aligned}
\text { cousedpech in (3) at } T & =010 \\
\text { q in (T) at } T & =.66
\end{aligned}
$$

Y. (11) gives control (6) - ort
early small neg deflection
due to eorly neg effect portherout
perk occurs at $T=8.50$
(11) $\Delta=.000658$

When (6) value is. 1207

$$
0 r 0.5 \%
$$

Conclusior: The timing was unfaiorable here.

Bigget effect should occur
Note that 348 are neg at $\overline{\overline{8}} .0$
lins pos for all thes ver of the
thine to $T=9.0$

from 8.10 on pert (3) is suader than (8)
luv phom 80.158 .08 , ersly veluced
neg causes pert (3) to hepesind to (8).
Thence (12) isng for $8.02-8.06$
ef. (12) perhsat $8.20 \quad \begin{aligned} & \Delta=.0021 \\ & \text { approuy } 10 \%\end{aligned}$
for T.C. near 8.55 , say 8.50

Seep. 56 for 661.101
Note: here, snigle lump $T=.04 \quad$ (cp.4)
Symeptic cursers peahs at $E .04$ (ptb)
See ifnnay slope in (1) occuns also at this hime.

$$
\begin{array}{ll}
0 \text { to.01 } & \Delta V=.0034 \\
.01 \text { t. } .02 & \Delta V=.0081 \\
.02 \text { to. } .03 & \Delta V=.0104 \\
.03 \text { to.04 } & \Delta V=.011173 \\
.04 \text { to. } 105 & \Delta V=.01096
\end{array} \checkmark \text { yes }
$$

Now compare with pmonitor currant in renste opto. Now 661 series seep.32

$$
p .44-46
$$

1/6/66 rename 66/.100
645.100 single cpt. fost TRNS.
also numer (6) masitors symptic arrent.
found Epode $=1.19$ carses $V_{\text {peak }}=1032$
Suthis cose, time course of synoptic cursent iscory close to time course of conductance charige.
neither meads to be followed amich beyan $I T=30$
both peak at $T=.04$
$\begin{aligned} & \text { setrip } 645.100 \mathrm{~B} \text { for louger tinne of conrected prak } \\ & 661.101\end{aligned}$
646.140 Threestoo chans inth $\varepsilon=19.6$ in (4)

$$
\text { (18) mplatequ20 at } T=.65
$$

st.st.contiol (II). 3435548 (11) qries
stistion (1) $\frac{.2901809}{.0533739}$ (17) groes .298048

$$
15.5 \%
$$

(18) gow. 133958

Thinona 20 graes .0066979

$$
\therefore \text { (11) mothe. } 30475
$$

$$
\text { and this is } 2.2 \%
$$

546.141 sermu shous $E=19.6$ goves prah $=.1001292$ TF. 8.66
(y)
$1 / 6 / 66$
546.150 shostchain, fort trans.
found $\varepsilon=44.57 / 3$ in (5) 44.6
Gires epsppeak $=.099918$ in (1) at $T=.82$ perkin(5) is $\begin{gathered}.83538 \text { at } T=.09 \\ .836\end{gathered}$
Cen mow complet table companigy $546.1 \$ 55601$ for all fiverpert, portious

* Also, norop possitle to sayp 646.150.
ch. 18 monitors net frut from denbites to soma. This peakd at $T=18$ - ayd cerersesat $T=.6$ which loohs to be close to thiaif rate of nase vi(1)

$$
\begin{array}{ccc}
T=.24 & .0698652 & \Delta=.0073486 \\
T .22 & .0625166 & \Delta=.0080664 \\
.20 & .0544502 & .0086174 \\
.18 & .0458328 & .0089178 \\
.16 & .0369150 & .0088716 \\
.14 & .0280434 & .0083812 \\
.12 & .0196622 &
\end{array}
$$

reversol mplies that ctt. (2) valtage foels fastr then pot (1) vothage Whech ir premuably due to ognalizathon tine constant eflect tavial oresomate $\lambda_{11}=26$. $\lambda_{22}=51$.

$$
\begin{aligned}
\text { at } T=.08 \text { synaptirnicurver } & =4.42266 \\
\text { cosscuser (17) } & =3.28679 \\
\text { net current } & =1.13587
\end{aligned}
$$

at $T=.04$

$$
\begin{aligned}
& (16)=3.63464 \\
& 17=1.97222
\end{aligned}
$$

net aunet $=1.66242$ presumably near peak
ie. stepert slope in (4) occurs not at peah sunaptic currev?
lus a peah of difference between (16) \& (17)
Compertument (1) pears at $T=.44$; stepestrise is at $T=.16$
Conscurnon(17) peaks at $T=.11$, when it is 3.543
This occurs corlies then triee of peak in (1) becouse losses to 345 reduce as

1/7/66
Yenterdoygotbode
661.144

$$
\begin{aligned}
& 66,164 \\
& 662,002
\end{aligned}
$$

$$
662,002
$$

$66 / .144$ Slow trana E with Monitor Cusrents Con check points raised on pr 39-40 which were really onzmal objective.
Here ε in (4) isgivenly (14) which at .092 mimernext
spraptric cusservi (4) groenhy (16) which peaho near. 08 orljelgaty lonat. 09
Voltagem (4) peaks at $T=.20$, volue of .1622

$T=.13$	$V=.148208$	$\Delta .005346$
.12	.142862	.006496
.11	.136366	.007760
.10	.128606	.009133
.09	.119473	.010600
.08	.108873	.012131
.07	.096742	.013662
.06	.083080	.015090
.05	.067990	.016225
.04	.051765	.016742
.03	.035023	.016056
.02	.018969	.013096
.01	.005871	.00587

There 661. remelts
and 645al00, renamed 661.100 p.39-40 all fit intuition quite well O coned provide the basis for a figure

1/7/66 chocront same pricture with 661. 164
661.164 slowetions in(6) frnonitor currents

Here got. (18) does not go weg. Which fits the idea That in 661.144 , this was anetopert. being on the neorside o/ maidpoint; here it is on the far side.
peak in (1) occurs at $T=.62$
.30 .05538 .00631

$$
\begin{array}{ccc}
\text { Occuns at } 1=.62 & .28 & .04907 \\
\text { hofmay at } 1=.00652 \\
\text { mayseope is merze.25 } & .26 & .04255 \\
& .24 & .03595 \\
& .00660 \\
& .020 & .02941 .00654 \\
& .00629
\end{array}
$$

whereas peak in (18) is at $T=.26$, which agreesquite well
peok in occurs at $T=.19$
hof pech ocurs al aboun. 06
may slope oceuss a little carlier botwen. 034.04

$$
\begin{aligned}
& \text { poek }\{\text { oocurs at } .092 \text { Sealfft } \\
& \text { peok (16) 11 } 11.07 \text { Sebecin drimp pot sentes }
\end{aligned}
$$

Bit (16) -(17) mis be looked at

$$
\begin{aligned}
\text { at } E .07(16) & =7.83028 \\
1(17) & =5.63196 \\
\text { uet } & =2.19832
\end{aligned} \quad \text { at } T=.04
$$

$$
(16)=6.80084
$$

$$
17)=3.74664
$$

$$
\text { net }=3.15420
$$

Bob Burke gave me these figures 12/22/65 on yellow sheet for MG \&FDL summatis.

Combinisd $\left\{\begin{array}{l}\text { ampl } 2026 \\ \text { thiettopeole } 1010 \text { msec } \\ \text { mV/hisec? } \\ \text { mV/uner/mV? }\end{array}\right.$
He foul/some non-lineas loss
But whon fost one was mader a bittle lates, added minch

$$
\text { Her min(b) } 20 \text { to } 80 \% \text { sloge } \frac{.021967}{\frac{.00929}{.012738}} \quad \frac{1.08}{.08} \quad \text { sloge }=.16 \times \frac{70}{4}=2.8 \text { mulust }
$$

$$
\text { amplini(6) was } 18 \% \text { honge (Tgg } \varepsilon=.85 \text { in (2) }
$$

$$
\begin{aligned}
& \text { MGolove (slowspsp) } \begin{cases}\text { ampl } 1.2 \mathrm{mV} & v \approx .017 \\
\text { twintopedk } 2.95 \mathrm{msec} & t / \tau=.6 \\
\mathrm{mV} / \mathrm{mocc}(20680 \%) & 0.75 \\
\text { mV/msepmV } & 0.80\end{cases} \\
& \text { FDhalove (fostpsp) } \begin{cases}\text { ampl } 1.55 \mathrm{mV} & v=.022 \\
\text { time topeak } 1.07 \text { meec } & t / \tau=.2 \\
\text { mV/mser }(20680 \%) & 2.1 \\
\text { mi/hure. } / \mathrm{mV} & 2.08 ?\end{cases}
\end{aligned}
$$

$17 / 66$
662.002 Three Chain epsp sums
fost TRNS

$$
\begin{equation*}
E_{\text {peak }}=\frac{1.0}{5.0} \mathrm{in} \text { in (2) of (7) } 5 \text { of (15) } \tag{5}
\end{equation*}
$$

for 70 mvV (20) sumss (b) + (11) of 1.82 (1) prak in (6) is .026 at $T=.24$ for E in 2ndept only peak in (II) is .0296 at $T=.84$ for \mathcal{E} in 5 thept. only 3.0
pedi in (1) is. 04286 at $T=.68$ for E inbothplaces
(20) is reergoshere positive, max $\approx 4.8 \times 10^{-5}$

But botwein $3 \times 10^{-5} 4$ this for $T=024$

$$
t_{0} T=101
$$

This mpplies departure from linearity $\approx 0.1 \%$

at $T=.24$.68	.84
(6).0259734	.0146711	.0116785
(11) .0045734	.0282284	.0296043
sum.0305468	.0428995	.0412828
(1).0305140	.0428578	.0412458
diff .0000328	.0000417	.0000370
(20).00003284	.00004176	.00003699

$$
\begin{aligned}
& \text { 1/7/66 piom 1/10/66 } \\
& \begin{array}{l}
662.003 \text { Evolues } .85+2.9 \quad \text { Kappes } 70 . \\
661.121 \text { venta }
\end{array} \\
& \begin{array}{l}
661.121 \text { mouits cure pert } \\
546.101 \text { fost } 5 \text {, }
\end{array} \\
& 556.101 \text { blow-n.11 } \\
& 661.551 \text { monitor arrent } \\
& \begin{array}{ll}
664.141 & \Delta T=.10 \\
664.142 & .25
\end{array} \quad \lambda_{0,13}=8 . \\
& \begin{array}{llll}
664.142 & .25 & 4 . \\
664.143 & .50 & 2 .
\end{array} \\
& \text { not fits, frist seek max } T
\end{aligned}
$$

1/7/60
mideffermoon
Thnizs to do - write mameen

$$
\text { of p. } 2,16,24
$$

? Broothact 4 Ka 有.
Stort outhnurg writing this sminalation summary
Further calculations
A. Momitor Current with fost transient
B. add unform G-Sslow thans to 556 , \&fit. $\{$ fost tans to 546 v
C. Than check 9 o distation ala $656 \$ 646$
D. Test linearity for small perts. lookforvule.
E. Test effect of varyniz duration of Squere TRNS
F. Monitor cursen for a (50%). ar layge E (50%)
$\square 664.14$ series usiog ept. 4 pert.
$13 \quad$ tritially, $A=1.0$
$14 \quad B=0$ and $\lambda_{B, A}=50$.
ε follows B
at Time charge
set $\lambda_{B, A}=0$
$\lambda_{0, B}=50_{0}$
Efollons B.
655.1 SlowTRNSE peale Erongesfrom 1.75 ini(1) to 33.64 mi (10) 17% in pertpealk 10
Here, twie to peak, Atc all nicreare monotouically with distance. slopes all decrease
Appropriate product (slope x thi frui 10% topeder) approy const.
Comporniz 655.1 with 654.1
blunt in (1) square E rel. low becanse duration lory rel to amplitude
sharp II in (10)" "relihigh " "short"" "
for the same rearon squore e in neon ypto groes sel. Sunaller rosuo slepes iu forcts:" " lorger " $"$ falling olopes very smiilar for pert at (3) or forthor out.

- Bes to prepere chat or groph from 655.1 A possitly only dirans complaisan with square
*? Possity chart only for Short Choin
? groph for longchaini.
Now compare 655.1 slow TRNS
64501 fast TRNS 6 gotop. 56
$1 / 9^{10} 66$

Pait of deperture for presen serios \& thispoper, is to fix spsp auplitude, and compare otherfeaturs. aso, fix E timine Course.

Thus, we hove ampl $=0.10, \quad 0.20,-0.05$ we have Tivecome, square, slow TRNS, fort TRNS, wavid.
Straterg of presentotion (1) forist, how unch do we hone to increare Es wo goont?
(2) " " doesthismineoseperst V "" \cdots "?
(3) What does this do to slope, time ofpeak, etc.
(4) How con cone ting to worke bock wards?

Problom of Eiture comne versus locetron.
is. congtowork bockwards if one or the other is gisen
Now, plan to gover the charts to note down hare the points that need to be brought out in poper. At mayprove tobecoriser nat to preseas squarefirst.
654% squore ε value ranges from 1.265 m (1) to 58.86 m (10)
18.5 mi (8) bery vonglly appoyimites $1,2,3,4$, wer mi, lit thensails off.
Vpeds ranges from. 10 to .88 mi(10
6542

$$
\begin{align*}
& \text { Turie to peake \& slopes somenho artifactual for por -ni (1) } \\
& \varepsilon_{\text {nipert. }} \tag{1}\\
& .20 \\
& g \\
& 9.9 \text { mi (1) to } 79.2 \text { m (4) } \\
& .965
\end{align*}
$$

654.5

Severe
Howew, neglectung arefo tualcomplication of per mi (1)

$$
\begin{align*}
& \text { thine from } 10 \% \text { to } 90 \text { \% o to pede } \approx .19 \text { fapts } 1,2,3 ; \approx .4 \text { por ip (} 10 \\
& \text { time fom risuig to folling ho of way } \approx .43 \text { for (2) } \\
& \text { this fam } 102 \text { op to to may }
\end{align*}
$$

$$
\begin{aligned}
& .24 \text { for (10) }
\end{aligned}
$$

Comprere 646.130 seep. 22 \& p. 12 get 3.54% prak distor at (1) for $\varepsilon=9.52 \mathrm{~m}$ (3)
at $T=.42$

This is 36% of the 9.84% volue for pert in (1) which agpees well with p. 12 shome thet at $T=1.0 \mathrm{~g}$ stop whe nin(3) is 37% of value mi

Here, this 2.95% volue presumbely consop to $\approx\left(\frac{.049}{.163}\right)(2.8) \simeq 2.95$
iri get same answer as with steps, if use peak distort, oftained when timig is for peak impert.opt. of then \triangle in (1) is compared wath may aluplitude ni(1). 663.031 aup. 38 hod unfarmable tiving

1/9966 Gotbock 663.032 and 645.100
663.032 Shat Chain pirs sinusoidal with perturbation.

sodery $T=8.5$
ept (11) goves (6) - (1) antores positurefor all T peak $=.00480$ at $T=90$
When vaturinf(6) is - .0670 (1) is -. 0718
is. distetot volus is more nez.
(los poo.)
thancontiol buy 6.85%

E whorh ogrees wosth an wicipotion, see b/t
This thise is. 40 ofter peri. onset
whoh oques with epsppenh ni (1) (Biors)

$$
\text { upt. (12) gives (8) }-(3) \text { ast. }
$$

positine for all T

$$
\text { peah }=.016346 \text { at } T=8860
$$

whencolveni (8is) 04832

$$
\frac{(3) i s .03197}{.01635}
$$

distorbe bue les pos.
than cortal hy 34%

Woo, Thore opprooches avoid true zero
It is miteresting that fast + slow TRNS both given. 15 asprod. of $\frac{d V}{d T}$ hepnax ant the trie from 10% to may. This corvesp. to p. 164 of Book?. also, with squere E, get same ansuer for pert beyou 15 bie forper closar, set sualer produrt, ne annys slopes abnomnaly low ielits perk amplitude becarse of artfo ctual shope.
$1 / 9 / 66$
645.100 B or aha named 661.101

Surisle comportment, Found peale $=1.152$ fort TPNS
Sumpormon, found ε poe $=1.152$
gross epsppeah $=.10$
sepertach to p. 40
at $T=.20$
Cero, here, initial Epechof 2.0 gave apsppeht $=1665$ at $T=20$
(4) Epeahocurs at $T=.04$

Tabulate with res of 645 . 1 series tabulate with res of 645.1 series
Now compare $645.1 \not \subset 65.1$ long chain series.

foot tron $T *=.04$ suellen asa:

$$
\begin{equation*}
2.74 \min (1) \quad 234 . \tag{10}
\end{equation*}
$$

The pother on one goes, the more difference the area mates

(4). 431
(10). 202
slow $\frac{d V}{d T} \operatorname{fon}(1) \cdot 764$
far
1.63 morethem
.677
.236 ondidero 19%
do othewords, the fart tionnent makes mosh move difference to rise rate for near pert, then for far pert. Ingot, (1) in short chain did not give quite a factor of $t w 0$.

* There is a bund of shape invariance, taken frown 109 point to 90% ar peak

Valnes of (4)

664.141	664.142	664.143	T
.0144	.00724	.01	
.0425	.0215	.02	
.0721	.0369	.03	

$$
\text { Plantomob/f - see p. } 64
$$

Discrepancios due to foet tha lost T value boffore time clyarge wos not convet. Suspec
mazram ersor as well: May has recently changing this

1/11/66 juig got bode the rums listedon p. 49 Tristlook ot 664.1 trenies of baried duratioins in (4) 664.141 with $\leftrightarrows T=0.10$, Epakeset at 8.0
apt.(15) reoched. $918 \operatorname{lng} T=.05 \quad$ ptt.(4) maturady -20
.9817 .08
$.9933 \quad .10$
$.60 \quad .11$
.0815 .15
.0182 .18
.00669 .20
.00055 .25
peaked at $T=.10$
which wosend of stop.
pf1(1) peabed. 0752
at $T=.26$
664.142 $\Delta T=.25, \quad$ epolesetat 4.0
? (15) of
(4) peats. 173 at $T=.25$, widicionendof stp. dhes not
aplee with
(1) peabod. .09154 at $T=.35$
$664.143 \Delta T=.50, \varepsilon_{\text {peok set at } 2.0}$
(15) off
(4) peaks. 1284 at $T=.50$, whenkisentof step is ofteme.
(1) peaked 07684 at $T=.50 \quad "$?

Snuahor (15) ismot dro (4)danges abuppty at .51 contimung conseoty.
1)
\qquad
ange 010201
\qquad
\qquad

\qquad
\qquad
\qquad
$1 / 11 / 66$
662.003 Threechain epspsuns

$$
\begin{aligned}
& \varepsilon=.85 \text { mi } 2 \not \& 7 \\
& \varepsilon=2.9 \text { in } 5 \& 15 \quad \text { mappa }=70 \mathrm{mV} \\
& \text { mi } \quad \text { of } p .47
\end{aligned}
$$

peation (1) is 2.13 at $T=.60$
(6) $1.55^{* t-7} .24$
(II) $1.3 \quad .84$
Δ pf (20 $\approx .176 \times 10^{-2} \mathrm{mV}$
Desinting fir
limesitity
661.121 Monitor Currew for $\varepsilon^{2.5}$ in (2)
pede in (1) is 100 at $T=.28$
symeptic curne (16) 2.335
los awo (17) 1.743
curner from (2) 5 (1); (18). 6867
neg peak gres from $\theta 6 \theta$
.24
.09
.11
.08
.36

$$
.52
$$

This is because (2) fells fasty than (1)

* Kappos were unco nreet

Betpec may slope - in (1) at $T=.08$ heane (8) $\quad \frac{.013}{.02}$
Npplacoh topoge $43-46$

Setup 656.101 benv 556.101 mith ciren anstop

$$
646.101 \quad 546.101
$$

662.004 mear epyp shiftilitimo

1/11/66 661.551 Gcusnent movitor $\quad 0=250 . \operatorname{ms}$ time ranout at $T=.52$, nead monethurfeters did not vachmaximin in (1)
mayin(5) wor -.092555 at $T=.14$
bist bay dose minh soones.
fieflat top 4 later
(16) may symaptic curneivocurs at $T \overline{\bar{C}} \cdot 02$ because drivir prot folls too low later.
(17) lors ann plohs of $T=.03$
(18) curvert fron (2) to (1) is we peate -.191
of ramains neg.
556.101 Shot Chaim, Slow TRNS, all cytepesturbed. mirtid $\varepsilon=.5$ peck gives .0873 mi (1) at $T=.37$
fornd $\varepsilon=.5787$ gives 100225 at $T=.37$
546.101 Shoichain, Fast TRNS, ollcpitsposturted.
initial $\varepsilon=1.0$ gives .08746 at $T=.20$
found $\varepsilon=1.152$ gives $\cdot 100012$ a $T=.20$
Strange that there is nearly factor of two between the turo Evahes formd.

1/12/-1/13/66
Computer down of NBS - arogibherith oulpuat. Writing Maven a Katy
Io tray prang Kat Heft, Young in Proc Roy Soc $B{ }^{1965}$
 miphyor Nertantopp 50458

* Should nidify 664 series, not orch to avoid The miconnet $T_{1} C_{0}$ thiovalue, bo also to avoid the tharp coff तL
This con be done as follows:

set $\lambda_{15,14}=50$ for $1 s$ tholes of $\triangle T$ desired
Then, usury $T_{0} C_{0}$, set this equal to -50 . orponitaly +25.8 then -25 .
Try ont with one of thened first.
If this works, perhaps do

$$
\text { T.C. at .05, } 10, .20, .40
$$

perhaps first in opt. (2)

St.sti Distartion firmes

$$
\begin{array}{cc}
\text { Slow-56 } & \text { Fost } 46 \\
\varepsilon=1.046 \mathrm{mi}(1) & \varepsilon=1.75 \mathrm{~min}(1) \\
\text { stst } 26.4 \% & 37.5 \% \\
\varepsilon=2.109 \mathrm{~m}(2) & \varepsilon=4.255 \mathrm{~m}(2) \\
& 32.4 \% \\
\varepsilon=.578 \mathrm{minall} & \varepsilon=1.152 \mathrm{mill} \\
26.4 \% \mathrm{mill} & 40 \% \mathrm{mil}
\end{array}
$$

(5) .08388024
$(1 / 14166)$
put in $\left.\begin{array}{l}646.0101 \mathrm{~B} \\ 656.101 \mathrm{~B}\end{array}\right)$
646.0
Seep. 70

Note that these steody stote distortions are Than for lazer pers in (1) only. Why? presumably becouse matelus trousient opsp peak a Ool

1/14/66
Got bock $646.101,656.101$, atro 662.004 hel too momponeng $\begin{gathered}\text { neels to hereducelto } 2 \text { chamis }\end{gathered}$

1/14/66 664.4 series thill pui in seneral doyp ago to um
664.421 hos T.C. ot $T=.25$
monitor cp. (15) looks O.K.

Hne, witurepear $=4$. cpt (1) peaks .09154 at $T=.37$
foul $\varepsilon=4.57$ goves. 10275 of $T=.37$
664.411 has T.C. at $T=.10$

Someone dropped cond giau $\frac{\lambda_{0,5}}{}=50$.
664.143 , sone got candsoni of onder.

Spissane time talhog with gose o bering bried somensua on Kantorovich's proof of the conergence conditions for Naston's vecthod. a reference is poovided ly the Perganon Pros tianslotion
"Functional Andyais in Normed Speces"
L.V. Kautorovich \& G.P. Akilow
(Lemigand Univi)

1/17/66 Now wede. Thy again to wiste in moming theave Compptations, biter and chores to ofternoon. aro library ressanch.
 Afrom ainsly who seys that C fiter $\boldsymbol{\lambda}$ is wit wailable

Sendring mamo to K. Frauls to setup semian
Susa gane me a xeroy copy of Pose's noter for Tho NIIt Wath. Tumaral thit has been gonin on for por several weeks. Better look oner before nuxt one, tomorsons.
646.101 B \& $656.101 B$ repertack to p. 66
656.101B Short chain, Slow TRNS, Curnen, stap.
(26.4\% stame xate \& peak $=.578 \mathrm{in}$ all fore copts.

646.10113 Shont Cham, fost TRNS, Gureal Stop Epak $=1.152$ in all fire ppto.

prian
664.412
.422

with $\lambda_{15,14}=-50$. of te T.C.

1/17/66
646.150 Threcchains, for TRNS, Curen Step.

$$
\varepsilon=44.6
$$

$$
\begin{aligned}
& \text { (11). } .311904 \text { a } T=.85 \\
& \frac{\text { (17) } .306810}{\Delta=.005094}
\end{aligned}
$$

$$
\text { alro. } 10174 \text { at } T=.80
$$

$$
.310255
$$

$$
\frac{\theta \cdot 305168}{\Delta=.005087}
$$

$$
1.63 \%
$$

1.64%
Snlitween, surely rise to 1.65%

$$
\text { Soyat } T=.810_{0} 82
$$

$$
\begin{aligned}
& \text { stst, coutral . } 3435548 \\
& \text { here } \frac{.3080370}{.0355178} \\
& \text { stst. } 10.36 \%
\end{aligned}
$$

We also got into discussion of weak solutions of function dol anolygies os opprozches to solutions which mon satisfy the needs of our problem, hin not the requirements of the idealized version of the problem when staled interns of differential equations.
My approach to this was Tho when Ago from continuous dendrites to compartmental dendrites, f an content to switch my focus for the 'one physical system to the other quot bother to try to prove that the solution for apt, world converge to other soln.
Jose's comment was that it was after New ton of Leibniz that analysis become so highly developed in terms of idealized continnity'g prom to that tine The discreteopprooch was coequal to the continuous. thur recent tines, pendulum is suongro bock. They hoy point is that our dot of our interest roy be nowhere ne or the
infinite resolution implied by continiuty. At may be unch nor realistic to define beg quantities as integrals over a region in space time. Such nutegrol quantities con be hailed by functional andlysis of restrictions of idealized couthinuty can he avoided; then convergence of solutions con he of tarred wider there bess stringent conditions soboliev treats weak solutions of doffien as limits of approy solutions $L\left(U_{j}\right)=C_{j}$ Hf sequence of opproy solus, U_{j}, produces sequence of small residualerrons, E_{j}, and if $\epsilon_{j} \xrightarrow{\longrightarrow} O_{\text {twountibe them } \operatorname{limit} \text { of } U} U_{j}$ is a creak solution, even though it a shicytsoln of $L(u)=0$
$1 / 18 / 66$
Speri minh of doy with Gore \& considemi mathernatical questions. Lecture was relates to chapter 3 of Portrigagn's ibook "Ordinary Differertial Equatioin" Caldson Coslay 1962

Question of miniqueners tequivalence clases. If $\left.\frac{\Phi}{\hat{N}}=\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)_{1} \ldots \varphi_{n}\right)$ is a fundomented

Solution of a livear homeons syptern,
Then there eyist constan matsices, C, such that

$$
\psi=\Phi C
$$

is olro a furtamantal solution.
This, A commented, neaus non-uniqueness; Gose roplide yes, but that ife focus on the invarian aspect, we note that all of these solutions hori the same eigenvolues, and "they can be regarded as an "equivalence clas". He emphosized that bery real number corserponds to an equirabuce cass composed of conesponling object that can be obtained as root of varion equations and es himeits ofvarions sequences. Returng to The fuglamental solutions, the canowical form is then the Gordon cavoricel fom whish puts the eigenidues on the main diagonal \& handles off dirgoval accondw to miltiplirity of roots (See, erg.fuial clepter of Portyaguin).

Uuporticular, the questions of convergence tupehed on in thase poged can be illustaled ly successone approyimatuons to a Solntion:
(a) ifve sequire very hogh spatio-temporal resolutiong convergence moy fail becorse of wild oscitlations that are witder, the higher the resolution require nen.
(b) for a coarser grained resolution, which nay still be perfedly seolistie in tomis of oprofionally sreosureable quantities, convergence may be perfectly sotisfoctory.

1/19/66
Gose's comments on previons poge were very intereshing to we, becouse those nothematical devices for escoping The tringon conditions of ideolized contincuty fornl in differential equatioins - Which are prowio to leeponerful ner motrematical nethods are at leost intuitally paitly equivalon to nug opproveh of roplaciog an idealizad coutininon physical nudel liy a cruder compartmental physical model. Cestonily, in Giólogical op physical voblems this is ofton very appropriate. It is relevan to consider what lovel spatio - tampral sesohetion is oppropnate to ang given probleme This ishighly relevoin to theoretical neurophypidology \& perhaps \& should consoder more explicot furtherpursuit of this.
Fose did comment that there newer nusthematical opprooches - fural analyis on ove hand, Sobolievs weds solution onother, may spoil the hope of mathernatical mification. A commentet that Bohar's complementarity principle relates to this A really should resead Bohr on this, becanse he did regard it as very baric to all saence). Jose also said That perhaps some furthen math . Teeory would develop for which all of these opprookhes become special coses. Tosome exten, iit seems to the That one ects inta questions of orientation o broadennt of definiotions, as for example classical prysiu \rightarrow selationty. Here again, concept of equivalence classes ruay proiide a way.

Thus, we coued howe do, dota observel d_{1}, sinulated luy model \#1
d_{j}, \quad u \quad u $\# j$

Howewn pain also come up that experimenal data thomselves are not dirictly selated to "reol systern', his to somesort of a nodel of thizsystony, this wodel benogg strongly nuluenced 1 m the experimantal procdures. Here we hove to consider "operational defiñtions" of Cota varíables.

Theory, accorbio to Bridgemose, should thee concemed with operotional variobles. Red proit hare is The it is only with the operational voriables that one can tast the adeqnouy of The corresporndonce hetween the theon/domain and the experimental domain. Withon a suitoble expt., one connot really tas the conesponderce' of a nore prini Tirk theoretical variable with somethy cossespoudio to it in variable leods to sufficion testable prodictoris, it aquires an aura of reality. It may he Nom pomerful of useful. As inphupios, itmoy ramain unoberable, got closert to it woy
$1 / 19 / 66$
Speir poi of dey checknoz into NATO Advaned Stuch fuot. plans Felso, viguny obow prozrom of Boulder sumuer conforonce.
$1 / 20 / 66$
Recall discussvons with Mores obow his poper onniformation conten \& detar twas nios concerned abons consistency in the use o/the cood model. He sometwies uses the single ward for three differen meanno. These three faerids, he has sometinos distingroshed in his semmars os followes:

$$
\begin{array}{r}
\text { general model }\left\{\begin{array}{l}
\text { Number of sptsispecified } \\
\text { all Aif unspecified }
\end{array}\right. \\
\text { pasticular model }\left\{\begin{array}{l}
\text { mumer of opts specified } \\
\text { some tij = O } \\
\text { other Aij wor be } \\
\text { constianoo to cortain } \\
\text { rarzes of volues }
\end{array}\right.
\end{array}
$$

$$
\text { specefir model }\left\{\begin{array}{l}
\text { all Ais volves specificd } \\
\text { Used for spoofic Sminulations }
\end{array}\right.
$$

He lithes to use model nost for the lost case. Then, f would propose that the first two should he callod niodel domain, or some thog litre this.

Qlso, sometines the semantically corfuses model with actual syptern. Que shoued ani to he consisten ahow correnfordences A distinctoin hese. "spistanic condations" of? Tulton? at Yole Homewr see feft.

Setap $6640 \quad(1 / 20 / 66) \bmod$
664.413

3 here meous C
.423 version
.433
.443
$120 / 66$
Title for pyos that nowed now be ground ant. refferbochtop. 52 ofp. 7
Distinguishinig synoptic potentials computed for different \rightarrow locitions of agmiptic a ctur ty.
$\{\rightarrow$ sp fail distrucutions of symontic conartonce

664. Series reper boch to p. $71 \geqslant 68$ prepare C versions to consect for for that (15) wew neg. as roon as $T=$ twio orgnial TE bohne
(15)

Need a second T.C. at which we set $\lambda_{0,13}=0$.

64297
Harl trout phoned and suggested a symposium on Math. Models for Neurophipiol group on afternoon lefore atlantic City. Jed Meetings / st session Thad apple 12
is. Mon April II
He of Withe of Patton had in mind
Moth Models of Anveoser of Synapses
He thought of Mores - 10 unite tatkon noteler
bis Moves not available.
Also, the though of nicludroy Don WAtson
Leon Harmon
Derele Fender
Fred Hilts

1/21/66
Read Freeman's momscript.
Oftemoon, toik Avo son to G. W. Htospital
1/24/66 Read Toue mamaryit for K. Frank
roughed on menv.
Qftarnoon - Received 664:000 Seris
$\begin{gathered}664.413 \\ \text { 20.13 }=25 .\end{gathered} \quad 0 \rightarrow 0.05 / \longrightarrow 0.09$
(15) peoks .9179 at $T=.05$
(4) peohs $.3822 \quad T=.08$
getsym.
(1) peass :1218 $\quad T=.23$
$664.423 \quad 0 \longrightarrow .10 / \longrightarrow .19 / \longrightarrow$
(15) pedss. 99326 at $T=010$ get sym obv.10
(4) peadr .2913 at $T=017$

$$
\text { obow } 10
$$

(1) peahs $13414 \quad .30$
664.433
664.443 (1) pears .1218 at $T=.46$. $70 \mid \xrightarrow{\text { a }} \rightarrow$
(15) has flat top 1.0
(4) peahs. 1502 at $T=.75$
(1) $11 \quad .108998 \quad T=.83$

The bey to success mog be to omit figure. this simplifies fasts, bus mog cost a lot in readability. Bu perbopo justified in getting over the hump.
$1 / 25 / 66$
Completed apereery Towe mancurp o fremen mommanys
Aredly must quite compintary θ all other thinpo o concentrate on shas popers. At is becoung unyar that t recoid at leart the outhine of the model t used in the Offactory bulb coupintations of evera in the earlier Ojai \& Stock kohm compuldowis?
I Theory for computing spatio temporal menbrane potacial distublances over neurous hoving both active and passine membrdne regions.
II Theory for compriting extiacellular Apotentials geverated ly moubrare proteritial disturbances.
The pmpose of this poper is provide a brief outhie of the theoretical basis for compitations that have been carried out ourer the post several years and which havefleien onely incompletely reppoted in

Also must write up
Distinguishuy synaptic potentials computed for difpenent spatio tan poral distituntions of synapitic conductonce clange. also oppecton Bulb mannerges?
Must poced to write these up briefly t use a beris for various invited talks.

1/26/66
Wode a start on writing first several prages of popert losted on p. 84 . Qeso looked oner slides of prints for dendro denbritic syngptic pothway talle to grue to Biophypics Lab-Semior (Toylor, chaullar, etc)
1/27/66 Gove tolk of had interestet discursion.
Reviewed overall denhritic story
Then gone same set of slideprints as at Tohyo.
Chondler was interested in one dimensional aspect.
Elvenfreis was interestel in orgmen that ayon movides less cursent.

Ht way he desirable to polosh off the poper with Gordon verysoon now, referrio to compratational nodel to pe presenta more fully elsew here.
1/28/66 Ebibed on manuscriptr (Ip.84)

* $31 /-2 / 2 / 66$ Heavry suows; worked at home on mamsaipt.

2/3/66 continued manscrip + star wonting
Also Phil Nelson proved. We will get togther vext webk on the series of 5 popers plamed toget her. (seepp.i,52,80)
2/342/4 Received dendrodendritie reprints sent 10 avinail to gerdon 25 reg . to Torm
Worbed on table of dofinitions for popers this was second toble (compartmantd) and was griento Durothy to type.
Also refercengjob of initititan from Windle to kecone an Assoc. Editor.
got bork 664.433 now ran O.k. ofter May. piod tert onT.C. fival hames lig addany ane E seep. 82

2/7/66 New weds, get bolk to poper for series with K, PLil + Bob seeppitr $, 52,58-72$ calcu, 80

Title for my shoot poper:
Distinguishniz symaptic potentials comprited for different spotiotemporal distritutions of synaptic coudrictonce changes.
off the cuff, before reviening eartion notes in this notebook, the ponts are: (1) adjust E peak, whatever spetio-terporal aspect, to Give preassignod amplitude of irspo somae (a) (This task is miqucly suited to Congulation differs fron empharis in ealien popers.
(3) Jncrease E with distance ont
(2) Tine counse choic \square rote ofrise $\}$ ture to peals cheraiteristies note of fall
(5) Cttempts to neanse inypedonce change.
(6) Sineusity onou-linedrity
neasly all of the compritations do not provide for onomalans rectifications.
(7) Tine come of E, of symeptic curnong of Vat site of Satata.
p.20 Coments on jount poper.
p. 30 Sumarizas moso/the computation series.

This week wew hy quibily with two hof doop sick bave for keal wold. Aeso wrote note to cetingers. Tritay $2 / 1166$ phomed J. B. Best. Ceso moticed Ti Bi' artide in Saince. seenextpoge. correspond top. 165 of book 6 , bin were not transacted because of pressure of denbrodenbritic story.

Non-Steady State, brut passive

$$
\begin{aligned}
\text { dy State, brat possove } & =V+\frac{\partial V}{\partial T} \\
\text { In } & =V+\frac{\partial U}{\partial T}-\frac{\partial \varphi}{\partial T} \\
& =U-\varphi+\frac{\partial U}{\partial z^{2}}
\end{aligned}=U-\varphi+\frac{\partial U}{\partial T}-\frac{\partial \varphi}{\partial T}
$$

For. Sinusoidal st.st. $\quad \frac{d^{2} U}{d z^{2}}=(1+j \omega \psi)(U-\varphi)$

For nom porsure cos well as non steady stole

$$
\text { In } R_{m}=R^{2}\left(U-U_{s}-\varphi\right)+\frac{\partial U}{\partial T}-\frac{\partial \varphi}{\partial T}
$$

see Niy.Ccal.
let $W=U-U_{s}$
Then $\frac{\partial^{2} W}{\partial Z^{2}}=k^{2}(W-\varphi)+\frac{\partial W}{\partial T}-\frac{\partial \varphi}{\partial T}$

+ for sininsoidal st st.

$$
\frac{d^{2} w}{d z^{2}}=\left(k^{2}+j \omega \psi\right)(W-\varphi)
$$

$\cosh z \Rightarrow \cosh \{\sqrt{1+j \omega \tau} z\}$

$$
\begin{aligned}
\text { but } \sqrt{1+j \omega r} & =\sqrt{((2+1) / 2}+j \sqrt{(a-1) / 2}=a+j b \quad \text { see } 1960 \text { popes } \\
\therefore \cosh z & \rightarrow \cosh \{a z+j b z\} \\
& =\cosh a z \cosh b z+\sinh a z \sinh j b z \\
& =\cos b z \cosh a z+i \sin b z \sinh a z
\end{aligned}
$$

2/14/66 Bet's article in Sceince - compore with Uimio. Best t Sience Tob 11, 1966 Vol. 151, \#3711,p.707-709 Elshtain Unconlitioned resporse to electric shock: mechanisun ni planasions. abstioct. Some implications of a math. Theory releting neuronal geonety to the poraneters ofexitation in uncounditioned respeme......

He deds with redist. of conc. of ions in closed cghinders.
Begnos with $J=-D d c / d x+D q E C / R T$
Tisfluydions, D diffcooff, $E=$ field mitusity, dhay quarmole.
Reom oppountly presentet in worm sumers digest Jou 1966
pestubbition at eytrenity of eghides depends upon haf leyth, L. Ior monophooverspree wave, E ly t, they get thasynold condition

$$
1 \leq(E L / \lambda)\left[1-\exp \left(-2 D t / L^{2}\right)\right.
$$

Where λ is rheobasic potertial.

$$
\text { Fofor haf levgth, } L \text {, cheobsic } E \text { is } E_{r}=\lambda / L
$$

Themmpsoint of vier, thinese of E_{2} and λ is mportunate.
cylnitess havayie
loy hernos have low Er and lovig tc
short " " high Er \& shoit tc
fin he does not qualify lungth as \forall do in tomms of Zlenth.
Now, look bode to my pp 117-165 of book 6
4/8/65 - 4/29/65 which produced
a ditto mamiconpt of 13 poges and 37 equations.
This mammaist dealt with "Strody Eeatrii 7ild", hul red mik notes (seep.à beft) began extersion to transients. Consider this further now, hecause of relevance to Best's work.

1

1

Seeprevions two poges
2/14166 porronemendrane, noo-stradystate PDE

$$
\frac{2 z U}{2 z^{2}}=U-\varphi+\frac{2}{2 T}(U-\varphi)
$$

$$
\text { where } V_{e}=V_{e_{0}}+\varphi(z)
$$

$$
\begin{aligned}
U & =V+\varphi \\
& =V_{i}-V_{0}-E
\end{aligned}
$$

repremeporint, a coustond

$$
\begin{aligned}
& =V_{i}-V_{e}-E_{r}+\varphi \\
& =V_{i}-V_{e}-E_{r}
\end{aligned}
$$

$$
=V_{i}-\underbrace{}_{\text {eoo }}-E_{i}
$$

$$
\therefore \frac{\partial U}{\partial Z}=\frac{\partial V_{i}}{\partial Z} \text { and } \frac{\text { constand }}{\partial U} \frac{\partial V_{i}}{\partial T}
$$

Consoder step, $\varphi($ applied at $T=0$
then $\frac{\partial \varphi}{\partial T}=0$ and $U(z)=V(z, 0)+\varphi(z$ theessme $V(z, 0)=0, \therefore U(z, 0)=\varphi(z)$
Problanbeconos $\frac{\partial^{2} U}{\partial z^{2}}=U-\varphi+\frac{\partial U}{\partial T}$
Take $U(z, \infty)$ from stiady state solution
Then $\frac{\frac{\partial U}{\partial z^{2}}}{\partial z^{2}} U(z, \infty)-\varphi$ at $T=\infty$
Befine $Y(z, T)=U(z, T)-U(z, \infty)$
gierg $\begin{aligned} y(z, 0) & =\varphi(z)-U(z, \infty) \\ & =-V(z, \infty)=\end{aligned}$ and $y(z, \infty)=0$

93

$$
\begin{aligned}
\text { mote } \tanh \left(\frac{1}{2} z_{m}\right) & =\frac{\cosh z_{m}-1}{\sin z m} \\
& =\frac{\sinh z_{m}}{\cosh z}+1
\end{aligned}
$$

See Doris out p. 144

$$
\begin{aligned}
& \operatorname{Tin} V(z, \infty)= \\
& V_{0}=f \tanh \left(\frac{1}{2} z_{m}\right) \\
& \text { ingead } U(z, \infty)=U_{0} \cosh z-\varphi^{*} \sinh z \\
& \text { for } \varphi=b z \quad(\sec 221) \quad U(z, \infty)=U \operatorname{losh} z-b \sinh z+b z \\
& =b-\operatorname{tah} h\left(\frac{1}{2} z=\cosh z-b \sin z+b z\right.
\end{aligned}
$$

But $V(z, \infty)=U-\varphi=$

$$
-V(z, \infty)=b \sinh z-b \tanh \left(\frac{1}{2} z_{n}\right) \operatorname{com} z
$$

2/14166 Now tho BVP simplifos to

$$
\begin{gathered}
\frac{\partial 2 y}{\partial z^{2}}=y+\frac{\partial y}{\partial 1} \\
\text { with } \frac{\partial y}{\partial z}=0 \text { at } z=0 \& z_{m}
\end{gathered}
$$

fwith $Y(z, 0)=-V(z, \infty)$

$$
Y(z, \infty)=0 \text { which mahes it seperable. }
$$

compere N.Y. Acodany poper.
Here $Y(z, T)=\sum_{n=0}^{\infty} C_{n} \cos \left(n \pi z / L_{n}\right) e^{-\alpha_{n}^{2} T}$
where $\alpha_{m}^{2}=k^{2}+(n \pi / h)^{2}$
and $C_{M}=\frac{\int_{0}^{2_{m}}(-V(z, \alpha)) \cos (n \pi z / / \alpha) d z}{\int_{0}^{z_{m}} \cos ^{2}\left(n i z / / k N_{m}\right) d z=\frac{z_{m}}{2}}$
here $k^{2}=1$, and for const field $\varphi=b z$

$$
\begin{gathered}
\text { eq. (23) of mamucongt gives } V(z, \infty)=\frac{b \sinh \left(\frac{1}{2} z_{m}-z\right)}{\cosh \left(\frac{1}{2} z_{m}\right)} \\
\text { or } l-\tanh \left(\frac{1}{2} z_{m}\right)-b z
\end{gathered}
$$

Synnesty at left neoms that for erednes of $n, C_{m}=0$

$$
\begin{aligned}
C_{0} & =\frac{b}{z_{m}} \int_{0}^{z_{m}} \sin z_{d} d z-\frac{b-\tanh h\left(z_{m}\right)}{z_{m}} \int_{0}^{z_{m}} \cos h z d z \\
& =\frac{1}{z_{m}}\left(\cos z_{m}-1\right)-\frac{b-\tanh \left(\frac{z}{2} z_{m}\right)}{z_{m}}\left(\sin z_{m}\right)
\end{aligned}
$$

which equals zero, lecame (scentring bft) of symmety.

$$
\begin{aligned}
& \int e^{a x} \sin p x d x=\frac{e^{a x}(a \sin p x-p \cos p x)}{a^{2}+p^{2}} \\
& \int e^{a x} \cos p x d x=\frac{e^{a x}(a \cos p x+p \sin p x)}{a^{2}+p^{2}} \\
& \text { sinhax } \cos p x=\frac{e^{a x}-e^{-a x}}{2} \cos p x
\end{aligned}
$$

$\because \int \min a x \cos p x d x=\frac{a \operatorname{aidhax} \cos p x+p \sin a y \text { aciop } p x}{a^{2}+p^{2}}$

$$
\begin{aligned}
& \operatorname{coshay} \cos p x=\frac{e^{a x}+e^{-a x}}{2} \cos p x \\
& \therefore \int \cosh a x \cos p x=\frac{a \sinh a x \cos p x+p \cosh a x \operatorname{sos} p x}{a^{2}+p^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2/14/66 for } z_{m}=1 \\
& C_{1}=\frac{2 b}{z_{m}} \int_{0}^{z_{m}} \sinh z \cos \left(\pi z / z_{m}\right) d z-\frac{2 b \tanh \left(\frac{z}{2}\right) z_{m}}{z_{m}} \int_{0}^{z o n} z \cos (\pi z z) / z_{m} \\
& =\frac{2 b}{z m}\left[\frac{\cosh z \cos \left(\pi \frac{z}{2 m}\right)+\frac{\pi}{m} \sin t \sin \left(\pi\left(\frac{z}{2 m}\right)\right.}{1+\left(\frac{\pi}{z m}\right)^{2}}\right]_{0}^{z m} \\
& -\frac{2 b \tanh \left(\frac{z m}{2}\right)}{z m}\left[\frac{\sinh z \cos \left(\pi \frac{z}{\pi}\right)+\frac{\pi}{2} \cos h z \sin \left(\frac{\pi}{2}\left(\frac{\pi}{n}\right)\right.}{\left.1+(\pi n)^{2}\right)}\right]_{0}^{2} \\
& \text { for } m=2 \text { angratmints, thite is }+1 \\
& =\frac{2 b}{z_{m}}\left\{\frac{-\cos n z_{m}-1+0}{1+\left(\frac{\pi}{z m}\right)^{2}}\right\}-\frac{2 b-\tan \left(\frac{z a m}{2}\right)}{z_{m}}\left\{\frac{-\sin \left(z_{m}-0+0\right.}{1+\left(\frac{\pi}{2 n}\right)^{2}}\right\} \\
& =\frac{2 b}{z_{m(1)}\left(1+\left(z_{m=1}^{2}\right)\right.}\left\{-\cosh z_{m}-1+\left(\cosh z_{m}-1\right)\right\} \\
& =\frac{-4 b}{Z_{m m}\left(1+\left(\frac{\pi}{z_{m}}\right)^{2}\right)} \\
& \text { Sand getzero }
\end{aligned}
$$

for odd m

$$
\operatorname{set} \frac{-4 b}{2 m\left(1+\left(\frac{m \pi}{z m}\right)^{2}\right)}
$$

97

$$
\frac{b-a^{2}}{s^{2}\left(s^{2}-a^{2}\right)} \rightarrow \frac{b}{a} \text { sinheat }-b t
$$

$e^{j \omega t}=\cos \omega t+i \sin \omega t$
$e^{j \omega t+j \theta}$
hos pluses shift θ
Soploer transform no th respect to X.

$$
\begin{aligned}
& \text { get } s^{2} f-s F_{0}=(1+j \omega \psi)\left(f-\frac{b}{s^{2}}\right) \quad(f-L\{\varphi\}) \\
& f\left(s^{2}-1-j \omega \psi^{\eta}\right)=s F_{0}-\frac{(1+j \omega \psi)}{s^{2}} \\
& f=\frac{s F_{0}}{s^{2}-1-j \omega \psi}-\frac{(1+j \omega \notin) b}{s^{2}\left(s^{2}-1-j \omega^{2} \chi\right)} \quad \frac{(1+j \omega \tau) L\left\{\rho^{\}}\right\}}{s^{2}-1-j \omega \tau} \\
& F=F_{0} \cosh \sqrt{1+j \omega \psi} \bar{X}-\operatorname{sidh} \sqrt{1+j \omega \notin \bar{X}}+b \bar{X}
\end{aligned}
$$

$Q^{*}+\sqrt{\sqrt{1+w^{2}} x^{2}}$ ninth $\sqrt{1 t^{\circ}}$
This cook hos already been worked out on p. $=\frac{d p}{d}$

$$
F(x)=\left(F_{0}-1\right)\{\cos 3 x \cosh \alpha X+i \sin \beta X \sinh \alpha Z\}+1
$$

where $\begin{aligned} \alpha & =\sqrt{(r+1) / 2} \\ \beta & =\sqrt{(r-1) / 2}\end{aligned} \quad$ and $r=\sqrt{1+\omega^{2} \xi^{2}}$
Cltenatine

$$
\cosh \{\alpha x+j \beta x)=\frac{1}{2 \alpha x} \frac{e^{\alpha x+j \beta x}+e^{-\alpha x-j \beta x}}{2}
$$

2/15/66 Received letter from Gordon with needed figure Nod to with g. B. Bs very soon.
Celso, before conthinios from pogge 96, note bode to p. 92 4 p. 89
Seriously consider changroz all Z to \bar{X}, because Z is used for impedance

$$
\begin{aligned}
& \text { external pot }=\varnothing(x) e^{j \omega t} \text { for compleyquantitios } \\
& \text { Suppose } \Phi(X)=b X e^{j \omega t}
\end{aligned}
$$

$$
\text { Suppose } \phi(x)=b \bar{X} e^{j \omega t}
$$

Allthis is implicit in the exprenvon, p.89, for
sinusoidal stst.

$$
\frac{d^{2} U}{d A^{2}}=(1+j \omega \tau)(U)
$$

Where U and Pare complex with $B_{1} C \cdot \frac{d U}{d x}=0$ at bothends.

$$
(F(x-\Phi(x)) \text { inizural }
$$

$$
\begin{aligned}
& \text { If } U(\bar{x}, t)=\underset{\text { complex }}{F(\bar{x})} e^{j \omega t} \\
& \text { Thur } \frac{d^{2} F}{d t^{2}}=\left(1+j w^{2}\right)(-6 \times 2) \\
& \text { toto } p, 97,4 \text { lines don }
\end{aligned}
$$

Formel
dated 3/26/62
entilled "Sumnay of neaults obtamin for Cole's problem of stability ni sphere.
Also hane carbon copy of meno to cole datad $3 / 26 / 62$.

$$
\begin{aligned}
& \left|R_{3}\right|>\left\{\frac{b R_{i}}{1}+\frac{b-R_{e}}{2}\right\} \quad \text { for } n=1 \\
& b<\frac{\left|R_{3}\right|}{\frac{1}{2} R_{e}+R_{i}}
\end{aligned}
$$

Cgrien this conbition, showel settle dom
arturan this condition, showleg emplowion
sTst. Coeff of comin tom is zero for cortidely locetod cursent dectrode.
Honemer mo for off centes a
If micitunay aloy rodins
of if $\left[R_{3} \mid\right.$ of ands $26 R_{i}=2 b-\mathrm{Re}$
then comise coff of order of gnipor tems.
Phonethim 4P M 2/15/66

2/15/66 Nike Benet just telephoned (11:20 AM) (He wanted to confirm a result he got $\left(\begin{array}{l}\operatorname{cole} 212 \\ \operatorname{SW-5} \\ 3600\end{array}\right)$ See He wanted to confirm a result he got | Lome thru K.S. Cole four years ago. |
| :--- |
| let. |
| 3600 |
| $W 0$ |

Hod to do with voltage clamping sphere when there is a constant negotúbe resistance.
Thocritical radius he got pom cole $\cos \frac{R_{3}}{\frac{1}{2} R_{1}+R_{2}}$ where R_{3} is $R_{\text {m }}, R_{1}$ is R_{e}, R_{2} is R_{i}
He would like to know if thin is correct, ant iso if A hose proof that if it holds steody, it must he clamped to value that is constan evenyuraro.
Their current electrode is centord.
Their potential ebctiade is near surface.
Result from previous pages is that

$$
F(x)=F_{0} \cosh \sqrt{1+j \omega \pi} x+\underbrace{\varphi(x)-\frac{d \varphi}{d x} \cosh \sqrt{1+j \omega \psi} x}_{\text {or this pat }=-\varphi^{*}(\sqrt{1+j \omega t e} \sinh \sqrt{1+j \omega} x x)}
$$

Reponsto evidence of Pat Wall

$$
\begin{aligned}
& \text { evidence of Pat wall } \\
& \text { go Phapiol. } 180 \text { pp }(116-133)
\end{aligned}
$$

as $\omega \rightarrow 0, F_{0} \rightarrow$ Vo pearlier ditto eq $(22)^{\text {a }}$
\therefore also $F_{0}=\frac{b}{\sqrt{1+j \omega \tau}} \tanh \left(\frac{x_{m}}{2} \sqrt{1+j \omega z}\right)$

$$
\text { se\# } 653.5
$$

$$
\text { see } \# 53.5
$$

lote
2/10666 Toomany mitroyptions ; rechede p,97

Sudv $=u v-$ - $v d u$

$$
\varphi^{*} a \sinh a x=\int_{0}^{x} \frac{\varphi(r)}{u} \frac{a \sinh (a x-a r) d r}{-d v}
$$

$$
\begin{aligned}
\text { lyports }= & {\left[\varphi(x) \operatorname{coh}(a x-a z]_{0}^{x}+\int_{0}^{x} \frac{d \varphi}{d x} \cosh (a x-a z) d z\right.} \\
= & -\varphi(x)+\frac{d \varphi}{d x} * \cosh a x \\
& \text { inote that } \varphi(0)=0 \text { hosbeen wethere }
\end{aligned}
$$

Now, when $\varphi=b x$
Then $\begin{aligned} \phi^{*} \text { asibiax } & =-b x+b\left[\frac{\sinh (a x-a r)}{-a}\right]_{0}^{x} \\ & =-b x+\frac{b}{a} \text { sinhax }\end{aligned}$

$$
=-b x+\frac{b}{a} \text { suhh } a x
$$

\therefore with $\varphi=b x$ and $a=\sqrt{1+j \omega t}$
The verult on $p .97$ + bottorn ofp. 100 becornes

$$
F(x)=F_{0} \cosh \sqrt{1+j \omega \tau} x+b x-\frac{b \cdot \sinh \sqrt{1+j \omega \tau} x}{\sqrt{1+j \omega \varepsilon}}
$$

Now $\frac{d F}{d x}=F_{0} \sqrt{1+j \omega r \sin h \sqrt{1+j u r} x}+b-b \cosh \sqrt{1+j \omega r} x$

$$
f o r x=0, \frac{d F}{d x}=0+b-b=0 \text {, as it showed }
$$ neyt, get eypession for F_{0} that satifies $B C C$, at X_{m}

$$
\begin{aligned}
& \frac{d F}{d x}=0=F_{0} \sqrt{1+j \omega r a n h} \sqrt{1+j \omega r} X_{m}+b-b \text { corh } \sqrt{1+j \omega r} X_{m}
\end{aligned}
$$

This sthenel omemeto previan ronet as $\omega \rightarrow 0$
Clso shoued seak the geveral expressizan for any $\varphi(x)$
mult.ly from fotton o/p. $104 /$ get, when complex coringete ehpre

$$
F_{0}=\left[\frac{b(\alpha-j \beta)}{\alpha^{2}+\beta^{2}}\right]\left[\frac{\sinh _{1}^{\alpha} / 2 / 2 \cosh \alpha / 2\left(2 \sin ^{2} \alpha \alpha / 2+\cos ^{2} \beta / 2\right)+j\left(\sinh ^{2} \alpha / / 2 \sin \alpha / 2 \cos \alpha / / 2-\cosh ^{2} \sin \beta \beta^{2} / \cos \alpha / 2\right.}{\sinh ^{2} \alpha 1 / 2 \sin ^{2} \beta 1 / 2+\cosh ^{2} \alpha L / 2 \cos ^{2} \beta / / 2}\right]
$$

*) malce use of suih $x \cosh x=\frac{1}{2} \operatorname{sunh} 2 x$
and $\sinh ^{2} x=\cosh ^{2} x-1$
now, as $\omega \rightarrow \Omega \rightarrow 1, \theta \rightarrow 0, \beta \rightarrow 0, \alpha \rightarrow 1$ Then abrove redures to

$$
F_{0}=\left(\frac{b / 2}{1}\right)\left(\frac{\sinh L+0-j(0+0)}{\cosh ^{2} L / 2}\right)
$$

$$
=\left(\frac{b-}{2}\right) \frac{\sinh L}{\frac{1}{2}(\cosh L+1)}
$$

from Dought 652.6
$=b \tanh (1 / 2)$

$$
\text { Duoght } 653.5
$$

Which agrees with oq (22) onp. 8 ofeosly Fradenom, note that $\sin ^{2}(y / 2)=\frac{1}{2}(1-\cos \gamma)$

$$
\cosh ^{2}(x / 2)=\frac{1}{2}(\cosh x+1) \quad \therefore \text { denom }=\frac{1}{2}(\cosh \alpha L+\cos \beta L)
$$

$$
\begin{aligned}
& F_{0}=\left[\frac{b-(\alpha-j \beta)}{\alpha^{2}+\beta^{2}}\right]\left[\frac{\frac{1}{2} \sin \alpha L+\frac{1}{2} j \sin \beta L}{\cosh ^{2} \alpha \alpha \alpha / 2-\sin ^{2} \beta \alpha / 2}\right]
\end{aligned}
$$

$2 / 16 / 66 \quad 5$ P.M.
Worked hard todoy, writing formputed Symentic, Potentids
Nowlook at pp 101-102
tn thisppelerplon to reploce Z woth X
Cbonote If $1+j \omega \tau=z=r e^{j \theta}$
Thon $\sqrt{1+j \omega \tau}=\sqrt{z}=\sqrt{r} e^{j \theta / 2}$

$$
\rightarrow \text { win } r=\sqrt{1+w^{2} \varepsilon^{2}} \text { and } \tan \theta=\text { wr } r
$$

$$
=\alpha+j \beta
$$

where $\tan \frac{\theta}{2}=\sqrt{\frac{1-\cos \theta}{1+\cos \theta}}$
but $\cos \theta=\frac{1}{r}$
$\beta=\sqrt{r 2} \sqrt{\left(1-\frac{1}{r}\right) / 2}=\sqrt{(r-1) / 2}$
$\therefore \tan \frac{\theta}{2}=\sqrt{\frac{1-\frac{1}{2}}{1+\frac{1}{2}}}$

$$
\sin \frac{\theta}{2}=\sqrt{\left(1-\frac{1}{2}\right) / 2}
$$

$$
\cos \frac{\theta}{2}=\sqrt{\left(1+\frac{1}{n}\right) / 2}
$$

Now, look at

$$
\begin{aligned}
F_{0} & =\frac{b}{\alpha+j \beta} \tanh \left(\frac{L}{2}(\alpha+j \beta)\right) \\
& =\frac{b}{\alpha+j \beta}\left[\frac{e^{\frac{1}{2}(\alpha+j \beta)}-e^{-\frac{L}{2}(\alpha+j \beta)}}{e^{\frac{L}{2}(\alpha+j \beta)}+e^{-\frac{L}{2}(\alpha+j \beta)}}\right]
\end{aligned}
$$

$$
\begin{aligned}
N_{\text {ow }} e^{\frac{L}{2}(\alpha+j \beta)}=\left(e^{\frac{\alpha L}{2}}\right)\left(e^{j \beta L / 2}\right) & =e^{\alpha L / 2}\left\{\sin \left(\frac{\beta L}{2}\right)+j \cos \left(\frac{\beta L}{2}\right)\right\} \\
e^{-\frac{L}{2}(\alpha+j \beta)} & =\left(e^{-\frac{\alpha L}{2}}\right)\left(e^{-j \beta L / 2}\right)
\end{aligned}=e^{-\alpha L / 2}\left[\sin \left(\frac{\beta L}{2}\right)+j \cos \left(\frac{\beta L}{2}\right) ~ \$ ~ \$\right.
$$

\therefore anmentor of [] is $\left(e^{\alpha / 2}+e^{-\alpha L / 2}\right) \sin \beta 1 / 2+\left(e^{\alpha L / 2}-e^{-\alpha / 2}\right) j \cos \left(\frac{\beta L}{2}\right)$ devom is $\frac{-2 \cosh \alpha L / 2 \sin \beta L / 2+j 2 \sinh \alpha L / 2 \cos \beta L / 2}{2 \sinh \alpha L / 2 \sin \beta L / 2+j 2 \cosh \alpha L / 2 \cos \beta L / 2}$

105

$$
\begin{gathered}
\text { altornte opmooh to } \tanh (x+i y)=\frac{\tanh x+\tanh i y}{1+\tanh x \operatorname{tanin} y} \\
\tanh x+i \tan y
\end{gathered}
$$

$$
1+\tan ^{2}=\sec ^{2}
$$

$$
\begin{aligned}
& =\frac{\tanh x+i^{\tan y}}{1+i \tanh x \tan y} \\
& =\frac{\tanh x+\tanh x \tan ^{2} y+j(\tan y)\left(1-\tanh ^{2} x x\right)}{1+\tanh ^{2} x \tan ^{2} y} \\
& =\frac{\tanh x \sec ^{2} y}{1+\tanh ^{2} x \tan ^{2} y}+\frac{j \operatorname{sech}^{2} x \tan y}{1+\tanh ^{2} x \tan ^{2} y} \\
& =\frac{\sinh ^{2} x \cosh x}{\cosh ^{2} x \cosh ^{2} y+\sinh ^{2} x \sin ^{2} y}+j \frac{\cos ^{2} y \cos ^{2} y}{x}
\end{aligned}
$$

$\cosh ^{2} x\left(\cos ^{2} y+\sin ^{2} y\right)-\sin ^{2} y$ thisognees covth top of $p+103$

$$
\begin{aligned}
& \cosh ^{2} x-\sin ^{2} y \\
& \left.\operatorname{oin}^{2}\left(\sin ^{2} y+\cos ^{2} y\right)+\cos ^{2}\right) \\
& =\sinh ^{2} x+\cos ^{2} y \\
& \cos ^{2} y=\frac{1}{2}(\cos 2 y+1) \\
& -\sin ^{2} y=\frac{1}{2}(\cos 2 y-1) \\
& \sinh ^{2} x=\frac{1}{2}(\operatorname{coh} 2 x-1) \\
& \cosh ^{2} x=\frac{1}{2}(\cosh 2 x+1)
\end{aligned}
$$

$$
=\frac{\frac{1}{1} \sinh 2 x}{\frac{1}{2} \cosh 2 x+\cos 2 y}+j \frac{\sin 2 y}{\cosh 2 x+\cos 2 y}
$$

Nin othenvere agrees. of this is shightly sumpler

Cnota, junt noticool That thin nevolingruan as 655.3 onpo 145 of Dwight, Table
$2 / 16 / 66 \quad 6: 25 \mathrm{PM}$
answer from p. 103 is this

$$
F_{0}=\left(\frac{b}{\alpha^{2}+\beta^{2}}\right)\left(\frac{\alpha \sin h_{1} \alpha L+\beta \sin \beta L+j(\sin \sin \alpha L+\alpha \sin \cos L)}{\cosh \alpha L+\cos \beta L}\right)
$$

also, $\alpha^{2}+\beta^{2}=r=\sqrt{1+\omega^{2} \zeta^{2}}$
Can now get modulus of F_{0}

$$
\begin{aligned}
& \left|F_{0}\right|=\left(\frac{b}{x}\right) \cosh \alpha L+\cos \beta L
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\alpha^{2}+\beta^{2}\right)\left(\sin ^{2} \alpha L+\sin ^{2} \beta \alpha\right)+4 \alpha \beta{ }^{2} \beta \alpha \\
& \therefore \text { modulus of } F_{0}=\frac{b-\sqrt{\left.\left(\alpha^{2}+\beta^{2}\right)\left(\sin ^{2} \alpha h+\alpha_{1}^{2} \beta L\right)+4 \alpha \beta+\cos \alpha \alpha+\cos \beta L\right)}}{r(\cos)^{32}}
\end{aligned}
$$

Clso Bof Bubre nour hos sone excellow mitary slow (den hitie) eps $p=$
Slowest is line tis

fosted

tuiny 645.1 - fast hans, 10 ppt. series. triniphomsisiog hof may to fallerg hof frex $\%=5$
$.294 \tau \simeq 1.2$ msec for fert in (1)
$1.458 \tau \approx 5.8$ muse
(10)
7.3

2117/66 Talhod wotu Plilt Bol.
Phil will lelpme plot figures tomorrow 10 AM
Thuy lobal the idea of tour figmes of the type

7 7i. 1 for slow than \& 5 cpts .
Fin. 2 por foit $\cdots \quad 10 \mathrm{est}$

7 ig 4 for rombed langth variation
Bof Burke's FPL TMG protern seep. 47
of 662 . series
A meritiou dthat got ghos no non-lineanty, with
vy. apts (2) 8 (5)
Bof's's suggention was to hone fort one be unifoin.
sì order toget more non-hieanty forther as.
Try fast thansion with uniform
$8(7)=$

$2 / 17 / 66$ from $1 \mathrm{pp} 103+105$

$$
\begin{aligned}
& \tanh \left(\frac{L}{2}(\alpha+j \beta)\right)=\frac{\sinh \alpha L+j \sin \beta L}{\cosh \alpha L+\cos \beta L} \\
& F_{0}=\left(\frac{b(\alpha-j \beta)}{\alpha^{2}+\beta^{2}}\right)(a b o v e) \\
&=\frac{b}{\left(\alpha^{2}+\beta^{2}\right)(\cosh \alpha L+\cos \beta L)} \\
& \begin{aligned}
& \text { Mod } F_{0}= \\
&=\frac{b \sqrt{\left(\alpha^{2}+\beta^{2}\right)\left(\sinh ^{2} \alpha L+\sin ^{2} \beta L\right)}}{\left(\alpha^{2}+\beta^{2}\right)(\cosh \alpha L+\cos \beta L)} \\
&=\frac{\left.\left.b \sqrt{\Omega\left(\frac{1}{2}(\cosh 2 \alpha L-1)\right.}-\beta \sinh \alpha L\right)\right]}{\Omega(\cosh \alpha+\cos \beta L} \\
&=\frac{b}{\sqrt{2 \pi}(\cos 2 \beta L-1)} \\
&\cosh \alpha \alpha L-\cos \alpha+\cos \beta L)
\end{aligned}
\end{aligned}
$$

$(10+1 \operatorname{lnc} x)^{i}$

$$
\left(1-\operatorname{lnc}(1)^{1}+(1+y+(x))^{\frac{1}{4}}\right)=(1)
$$

$$
108+0-1 x(9+09
$$

$$
f_{0}(x) \sqrt{2+4}
$$

$2 / 18 / 66$
Worked pup plothir Scales for plotting also, worked ow differ non
syuoptircuoses-los current
\rightarrow for 661.121 \& 661.164 work are to be plotted into a Did plot ofternoetr $2 / 18 / 66$
Now go oven 664.400 Mod. 1/20/66 which worked for
look bod to p. 82

100.

$$
\text { 10 T . } 1
$$

$$
.011
$$

These pronchel up late $2 / 18 / 66$

$=1 \log ^{2} \log (1) \sqrt{3} x$

\qquad

$2 / 21 / 66$
Got book 664.404 series setup p. 112
664.414 found tor 13 $=19.13$ gat asppped $=.1000$

Did a tracery plot of these results.
$2 / 24 / 66$ Setup cleanup comprutations.
$\sqrt{ } 645.100$ do to $T=2$. Set Koppa 6
(later velo as 655.1 for slow trans.)
6
645.140
645.111

2125160
$\sqrt{661.165 ; \text { can drop } 1+18 \text { not } 6,16,17 \text { f19 }}$
$661.1228+444$
9550.1 ont to 2.0

Giunire suggertod hy Warg'. To molre 19 gone 16-17
hovito use Koppa of Signe Adpeublin a miverse fependong

$$
\begin{aligned}
& (19)=9 \text { becouse pebl } \\
& =9.86(14)-9.86(14) \\
& \\
&
\end{aligned}
$$

Marjsapp, make Kappa19 depenlent upon 6 then $\sigma_{19,14}=\frac{9.86}{(6)} \quad$ nidicatel as neg flyper

$$
\begin{aligned}
& \sigma_{19,5}, 17=25 \\
& \sigma_{19,12}=-9.86(14)
\end{aligned}
$$

$$
\text { forseep. } 117
$$

not weersary to do this

2/22/66 WarhiBerthdry
Talkedwith Gose abow his O_{2} rebere, diffurevon Itc.
Worked on computad epsp arite up.
Todoy, exped Bob-Burce to helpwith a figure (plotting)
For Opril II - Neurophypoology Club a athontic Cety-
Belman 7arloy osks for 30 mmi on dentrels
Presen plan $\approx \frac{1 / 3}{}$ to $1 / 2$ on epspcompratalions
$1 / 3$ to $1 / 2$ on deudsodenticiec story
$1 / 3$ conmente on possive us active dentrite.
Especially give figure dabating synaptic to other currats to epsp.
?. Wagke on detectability afsoma of Condintance change in dendrites.
$2 / 23 / 66$
Abo, uneot wiste G. B, Best क Toni Kerser
Plottring with Bob Burke is to be 645.1 (1), (4) $\&$ (8) (10)
Androwes
shomed get louger Fime (witharplot) for 1/10 645.1 senios) ho
Neeltosetry also unifamicase \& $4 / 10 \cos e$
Aeso need unifom slowtranz * $1 / 5$ of slow troms

Qloso 661.1217 ned moretmin for currents 661.164 condelete (1) \&(18)
mangle odd (116) -(17) as (19)
$\sigma_{19,12} 9.86 \times(14)$ istrad of $\sigma_{16,12}$ $\sigma_{19,14}-9.86 \times(6)$ mistecto $\sigma / 6,6$

$$
\begin{array}{ll}
\left.\begin{array}{l}
\sigma_{19,7} \\
\sigma_{19,5}
\end{array}\right\} & 25 \\
\sigma_{19,6} & -51
\end{array}
$$

$2 / 25 / 66$
Firishal settwisup computatious (p.115)
Yetterdoy urote t revised par of man script.
Hawlews flood or repinit requerte for deuh wode pinter.

* Should get art dept. To heory up 7ig. 5 of dew hodendinter. poper, for use in poperwith gordon

$$
\begin{aligned}
& \text { Got bodz lote } 2 / 25 / 66 \\
& 645.100 \text { lomger thin } \\
& 645.140 \\
& 645.111
\end{aligned}
$$

2/28/66 Putimeasly 655.100 for lorgertine Fot bock
Meanderion of figures

$$
\begin{aligned}
& \left.\begin{array}{l}
664.414 \\
664.444 \\
661.122 \\
661.165 \\
556.112
\end{array}\right\} \text { firmished figm }
\end{aligned}
$$

Put bock 664.414 \& 444 with λ_{013} fixed also K_{15} of TiC.mi 444
see 121 forvemets.
Th use Nay's Eigawolve program

Also dod 10×10 with undtans $25 .-51.25$. $\begin{array}{llll}\text { o } 5 \times 5 & 6.25 & -13.5 & 6.25\end{array}$

Could also thy 645.111 with $\mu_{i j}$ 100. $\begin{aligned} & z_{m}=1 \\ & z_{m}=4\end{aligned}$ $6.25 \quad z_{m}=4$
$2 / 28 / 66$ \& $3 / 1 / 66$
Wrote for. 3 legend.
*Tried semiloz plots of pealing of slow $1 / 5 \quad(556.112)$

$$
\text { an for } 1 / 10 \quad(645.111)
$$

$$
\text { and slow } 5 / 5(556.511)
$$

Got reasonably good peals for there, lint ratio of plebe slope passive slope was greater Thou \& expected. slope

$$
\begin{array}{ll}
\begin{array}{ll}
\text { slow } 1 / 5 \text { gore Ration one } T=1 \text { of } 35=12.9 \times e \\
5 / 5 & 26.5 \approx 10 \times \mathrm{e} \\
\text { fast } 1 / 10 & 45 \approx 16.5 \times \mathrm{e}
\end{array}
\end{array}
$$

Now from my decay tire constant boundary value problem, t expected smaller ratios. But wait ratio $2.718=e$

$$
\begin{aligned}
& \ln 35=3.55 \\
& \ln 26.5=3.28 \\
& \ln 45=3.81
\end{aligned}
$$

see p. 1180 book 7 Fa diva 4 Brookhoir data gives $\frac{r_{0}}{\varepsilon_{1}}$ between 5×8
\& from .j. 43 of boots? that his betwom $L=1+L=2$
Here, we lie very close to $L=2$, as we should.
Hewer, bpoe did ln, done, thodersoneansly conch ned that factors were coming on $>10+$ was frizzled. in decided to solve for Eizenvahes, to chad geist

Eiguvalue remits: $Z_{m}=2$
5×5 matrix $(\triangle Z=0.4)$ with $\mu_{i j}=6.25$
magbe remer of limping?

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { got }-1.0,-23.6,-9.6,-17.4,-3.39 \\
\text { secp. } 43 \\
\text { vook } 7 \\
\text { for } 2
\end{array}\right\}-1.0,-3.47,-10.9,-23.2,-40.5,-62.6
\end{aligned}
$$

The other 5×5 had an erros in card prunding (deciumal poin) The cluewas that no eizenbolue suall as 1.0

* Reason 1.0 conses everyfunie is lecanse every $\lambda_{j j}$ is exactly 1.0 grester in obsolute value than the offdiagond elernents of same row or colmun.

The 10×10 with $\mu_{i j}=25$. gave

$$
\begin{aligned}
& -1.0,-98.5,-3.45,-66.5,-35.5,-91.5,-10.55,-80.4 \\
& -50,-21.6 \text { The lenger ones gooff presimply becouse }
\end{aligned}
$$

Honouer, the smaller ones agree well woth B.V.t.

Setup $\varepsilon+g$ truther of isolated.
Who slow \& for EPSP - look back t. 9.60 + p(-47) 662. series
Plento n oke slow EPSP folly disthitutet.
662.101 Twochain o/(5) Sums
mod.bosel on Three chan 662.004 made fest transient in (2) of fore

A slow transient 7,8,9,10 of second five of hod summer to take sunk.
Nat time, will hove to sum the perturbations, provided they are the ones we want.
662.200 series following from 655.900 series.

$$
\begin{gathered}
662.201 \\
2 B=5=5 \\
\text { slow } g=10 \\
\text { ant } \varepsilon=120
\end{gathered}
$$

662.202

Replot (tace 664 series for figure)
Setup 646.135 for plot

Romunen pacommenlel 1933 artide ly Losente de No Studies in Hearnig in Laryngoscope
as axcellent. He hespurmedideas from this formary yeross,

He said that Iorente's switch from anatorng to thpoology wos economically motivatod. Hesaid tho thorghos the 30 s of $4 \mathrm{O}_{2}$, these wos no niterast o suppoit of such anatonica get any kind of job. All excep a four reuroanatonists took up oscillbsopes. a bare 13 nauroanatomists establoshed the Cajal club, which net before the main hnoony neetinge o ouly very recently began to have a biz attendence.
$3 / 3 / 66$
Wrote in monny-deleltess.
Toltal with Rasmunsen in opter noon (Mamen (Mrorente)
Gotbodr 662.101 sepente $\left\{\begin{array}{l}\text { fost } \varepsilon=.85 \text { min (2) } \\ \text { seppormos acese }\end{array}\right.$ seppermonpoge
op. 47660 $\quad\left\{\begin{array}{l}\text { slow } \varepsilon=.1 \text { in }(\theta)(8)(0)\end{array}\right.$
here peak(i) wos $v=.022$ or 1.55 mv at $T=.24$

$$
\begin{gathered}
\text { peok (6) was } v=.0111 \text { on . } 778 \mathrm{mv} \text { at } T=.60 \\
\text { trosmall }
\end{gathered}
$$

nierease slow epeakto 16 ald momito of yst $12 \neq 14$
setap 662.102 with $\varepsilon=.85$ ni (2)

$$
\text { sh } \varepsilon=.16 \mathrm{~m}(2) \theta 2000
$$

also let (18) have (1) -(6)

pil not sur becawse had two $\lambda_{17,2}$ oneforeos ε better charge ora to $\lambda_{19,2}$

1) <1

$$
101 \cdot .51)
$$

$0-1$.

\qquad

180
$(-\lambda)+2+20+20+20$

$3 / 4 / 66$

Alrogotbode 662.201 seep. 122
slow fpeok $=10 \mathrm{~m}(2)$ gores ipsppeakis in (3) of $-.04014-2.88$ at $T=.64$
fort ε peak $=1$ in (9) 4 (10) grees epsp peak in (8) of +.0344 at $T=.24$
stminer (19) statt pos thowers neg.

$$
2.41 \mathrm{mV}
$$

plothing scales were off.
desviable to delay ε in later problewno also, probally showid monitor (2) (4), (4)

$$
\begin{aligned}
& \text { Put an } 662,202 \text { thisin201 witu salefixeld mantite }{ }^{14} \mathrm{~g}+\mathrm{g} \text { ain } 20 \\
& .203 \text { thisin } 1 \text { itctain } \varepsilon \text { mida, gmz } \\
& \text { 2ulchair } \varepsilon \text { miqdio, gmi } 7 \\
& \begin{array}{l}
\text { here } 19 \text { sumsor } 2 \text { curner nin (7) (2) } \\
20
\end{array}
\end{aligned}
$$

Phil tetephoned 3/7166
withty to see end / weok
should talkwith hin whon gat to anom. sectification.
setup 662.204 with Edeloy. to $T=2$ of seconlchain has sume.

Setup redo on 662.203
662.102
$3 / 7 / 66$
Got bock 662.102, needs one of two $\lambda_{17,2}$ dhangel to $\lambda_{19,2}$
646.136 this is pat of senis for ISTP T TRNS E fizme.

Gores opto $\left.3,8,13, f\left(117=\frac{1}{2}(3-8)\right)\right] ; 18=13-\frac{1}{2}(3-8)$ hod 244 ditapponits

Kappa $18=10$.
646.137 suggle chain early prot of stopin (1) thes
phescontrol.
The abone two were succensfal.
Con now prepore figuse.
662.203 TRNS Et J Twochanis, Sot dependence diagnostic

No ${ }_{R}(20,2)$ riperameta list
approntly $\sigma_{20,2}$ uns niadrestantly omitted.
662.202 here $\sqrt{20}^{20} 2$ was 0.12 \& plots now O.K.

Bo these wres no two change + somethy fany
7 thoppord at $T=2.0$
sumeer 19 gives asith. sum of epsp t ipsp sume 20 goves sympitie ainser at (2) for folone.
(twie exceeded) In in tuin factor
worked O.K. for $\sum \not \subset$ nepponate also anith sim for both stanting of zes.
Nayt, deloy E to $T=.2$

8
0

$(8-8) \div-$ 8 $5 x+\cdots(8+8) \frac{8}{5}=8+2+5$ $+8,=8 \quad-x+\pi$

$3 / 7 / 66$
Completed figure for conductance dis fort ion of stipp in (1) f(3) of 5
poosed on 646.35136 poosed on $646,135,136,137$

Tom Reese stotpd im. He hos done senval recoustruction of all endrizs in a sundl colme of EPh neaar MBLS.
of 50 endnogs so studied.
≈ 40 enl on mitral secont any dendites. of these ≈ 30 centuind $1 M \rightarrow$ and $1, G \rightarrow M$

$$
\approx 8 \text { II ary } M \rightarrow G \text { and oceans ot he to townel }
$$

3 were eudrop foom tuhnown sonnce endiy upon granule dentrites.
2 were endrusp upon endrigs, sere, neel funtre Thing
?s combrif thene are mistralayon colleterals? rver i/so, the others are mich more numerous.
662.204 time deloy of \& in ©t(0)
(19) odls (3) 8 (4)
(20) montar curnent in (2)

$$
\begin{aligned}
& \text { Vuegpeak }=-.70 \text { at } T=.14 \\
& \text { when (3) oqual }-.01336 \text {) }
\end{aligned}
$$

pruzgled why this ny cuneaipeak +.695 et $T=.12$ is geatea in abs. oobere than
put m. 205 for (19) of 203 where drion pot. choulthe a litte greater. which is like 203 but with tine delay of .204
662.103 Two Chan EPSP Smus-
the fost ε pedr. 85 in (2) coutsal is proordal 1.55 mV at $T=.24$ boy eodier nu. 101
hae
(1) gives this pless slaw en in 2,3,4,5
whoss(6) goves slow E.ouly in $7,8,9,10$
(18) gives (1)

$$
\text { at } T=.36
$$

perk in (1) is 2.43 mV at $T=.36$
(6) 1.24 mV o $T=.60$
(18) $\quad 1.53 \mathrm{mV}$ at $T=.24$
mimplynug only .02 mV disiospancy

$$
\begin{aligned}
& \text { (} T=36 \\
&(6)=1.034 \mathrm{mV} \\
& \rightarrow= 1.428 \mathrm{mV} \\
& \text { anith }=2.462 \\
& \text { only } 1 \%
\end{aligned}
$$

3/8/66 Gotbach
『 662.103 neels to be remm with $\lambda_{0,16}=\Theta 1.28$
662.203 needs to hone onedpentence relation deleted 662. 204 error in data card realed correction

Gose's talk this mornigg on fiaprunov's direct nuthod. previons hire he dealt with theory. Todoy he presented some examples.

How workompapes. Frzbyenb, toxt
3/9/66 worked on 7os. legent + text for "impelance" distortion. Gotbods comprutations in ofternoon 662.203 E J two chanis. momtondlyy 20
(3) has slow On in (2), foster E in (1) 6 (2) sameside
(8) has slow gin (7) 11 " (9) 4 (1) oppositiside

$$
\begin{array}{ll}
V & \rightarrow \text { pes peals }=.75 \mathrm{mV} \text { at } T=.16 \\
\text { pospealr }=.47 \mathrm{mV} \text { at } T=.12 & \text { meg. extome }=-1.25 \mathrm{mV} \\
\text { neg. athens }=-1.8 / \mathrm{maV} \text { at } T=.76 & \text { at } T=.92
\end{array}
$$

(20)

$$
\begin{array}{r}
\text { negegteme }=-1.008 \\
\text { at } T=.12
\end{array}
$$

(19)

$$
\begin{gathered}
\text { negeythom }=-.624(\mathrm{dv} / \mathrm{d} T) \\
\text { at } T=.12
\end{gathered}
$$

figer drovig pot for g in (2) here, When(8) equalst.0095 Fram in (7) here Compare O. 1 \% oup. $60 \quad$ But BobBushe got $>10 \%$
with rogaid to concellation of F_{E} fromOjai poper

$$
\dot{v}_{i}=\sum \mu_{i j} v_{j}+f_{i}
$$

or, dropping subscript i \& treating $g=0$ wegh, foroch i

$$
r i=\frac{d v}{d T}=r \sum \mu_{i j} \tau j+\varepsilon+x
$$

or, i/ $\mu_{i j}=5$, warl have of $n=5$

$$
\left(\begin{array}{r}
v_{1} \\
v_{2} \\
v_{3} \\
v_{4} \\
v_{5}
\end{array}\right)=\left(\begin{array}{cc}
-6 & 5 \\
5 & -16 \\
5 & 5 \\
5 & -(1)+\varepsilon) 5 \\
& 5(-11) \\
& 5(-6)
\end{array}\right)+\left(\begin{array}{c}
x \\
0 \\
\varepsilon 1_{\varepsilon} \\
0 \\
0
\end{array}\right)
$$

for the cose of cursew apphid to (1) and (Ein (3) wherent is mprotan to remounher ε is a fou of thie. Wh hove here a linear systan with a variguntay coffs ta varightry forcuy function.

$$
\text { Seep. } 136
$$

$3 / 10 / 66-3 / 11 / 66$
Waing on num oupt. Cbostantd biblioppthe
ne
\rightarrow accurrog of
cancellotion effect for $E G=E 2$
$=0$ (18) of
compare compartments (17) $A(18)$ of
656.514 where $E_{E}=E$? $\}$ slow ε
$\left.\begin{array}{l}656.514 \text { where } E_{E}=E \text { in } \\ 656.513 \text { seow } \\ \text { we }\end{array}\right\}=1$
agrees to all 6 siz, figmes for all T compans (18) apees for all eycop the very small values

$$
656.514
$$

$$
\begin{aligned}
& \left.(111)-\frac{1}{2}(1)-6\right) \\
& 656.513 \\
& .283122 \times 10^{-6} \\
& .109151 \times 10^{-4} \\
& .689887 \times 10^{-4} \\
& .219814 \times 10^{-3}
\end{aligned}
$$

$$
.279397 \times 10^{-6}
$$

$$
.689889 \times 10^{-4}
$$

oll agree pom here on
\therefore error as proction of (11) Wwith $\approx .3$ is factor $\approx 10^{-8}$
This suallerion due either to computa or to
Mones prozram, lecouse the congmulations, thenselves are midependen.

Another words. Applied current must not, itself, change any coff. This anomalous rect. would not be permitted! T If preen, how fart does it develope?

The ropeltof rout comes from limens ot the system of dies not require coffle to the tincembitials, provided they ane ideation in both trials. Hence extension to compartuanted Aystan con he inferred, for system than on po 133.
$3 / 1166$
for an isolated compartiven, we waved hone

$$
\frac{d v}{d T}=-(1+\varepsilon) v+\varepsilon 1_{\epsilon}+\chi
$$

Af we set $E_{G}=E_{r}$, witch here means $f_{\epsilon}=0$, then
get $\frac{d v}{d t}=-(1+\varepsilon) v+x$
If ristra, we subtract two cosies s, were get

$$
\frac{d v_{1}}{d T}-\frac{d v_{2}}{d T}=-(1+\varepsilon)\left(v_{1}-v_{2}\right)+\left(\varepsilon 1_{e}+x_{1}\right)-\left(\varepsilon 1_{\epsilon}+x_{2}\right)
$$

on, sethigy $g=v_{1}-v_{2}$, we hove

$$
\frac{d y}{d y}=-(1+\varepsilon) y+\left(x_{1}-x_{2}\right)
$$

If $x_{2}=-x_{1}=-x$, then $\mathbb{v}_{1}=-v_{2}$ \& $y=2 v_{1}$
\& we condowide turn hay $2+$ get

$$
\begin{aligned}
& \text { If } x_{2}=-x_{1}=x, \\
& \text { A we condoude then my } 2+\text { get } \\
& \text { i, cancellation of } E_{e} \text {, and for the }
\end{aligned}
$$

Bu actually, cancellation of E_{E}, aw for that matter also does not depend upon $x_{2}=-x_{\text {. }}$

$$
\text { Angureral } \frac{d y}{d t}=-(1+\varepsilon+\beta g) y+\left(x_{1}-x_{2}\right)
$$

where y conesp to v with $E_{t}=E_{j}=E_{r}$, and $x=x_{1}-x_{2}$
Thepoint is that the EE $+E_{i}$ contributions are in the for cuing term, and sup for position holds for The forcing tami if not for The perturitection of The sisflem itself.

This trich doesdypud yon $E\left(E_{E}-E_{r}\right)$ berg the same

For opprotumation, could comider $C_{1} \approx C_{p}=x$
then

$$
C_{p}=B_{p}+D_{p} \text { goes }
$$

$$
\begin{aligned}
x & =B_{p}+x V_{p} \\
x & =\frac{B_{p}}{1-V_{p}}
\end{aligned}
$$

Tor $646.130-137$, where we hone all the umber, contort this.

$$
\begin{aligned}
& U=.4051 \\
& L=.2635 \\
& \begin{array}{l}
U+h=.6686
\end{array} U-L=.1416 \\
& V p=.3343 \quad B p=.0708 \\
& \quad X=\frac{.0708}{.6657}=.1063
\end{aligned}
$$

whereas $C_{1}=0.098 \quad$ autat $T=1.04$, howe $C_{\text {it }} 0.101$

$$
c_{p}=0.105
$$

$$
\begin{aligned}
\operatorname{Now}(.101)(.3343)= & .0338 \\
.0708 & =D_{p} \\
.1046 & \simeq C p
\end{aligned} \quad \text { close }
$$

whereas $(.098)(3343)=.0327$
$\frac{.0708}{.1035}-\frac{1}{\text { alittlelow, but not bad. }}$
$3 / 14 / 66-3 / 15 / 66$
Writing "distortion" due to dendritic conhretance change poi of popes. Note, mos of conpuetalionss do not hone the control step trances in the perturbed compartines, thence, tdonst actually hove the ΔV perk, with $E_{\epsilon}=E_{r}$, in the perturbed compartment. Assume my general niterpretation is correct, These dis tortious can be estimated as follows A if desired, could he checked out.
Set $\begin{aligned} U & =\text { upper dashed curve input. opt. } \\ L & =\text { lower } \text { " }\end{aligned}$
$V_{p}=\frac{1}{2}(U+L)=$ control v peak " " " in obsacce /anent.
$B_{p}=\frac{1}{2}(U-L)=$ distance form baschi to peach of dotted curve
for $E_{\epsilon}=E_{r}$, and presence o curreristep.
Bu this does not give amplitude of central step at twice of vpuk, nor distortion from it to dotted peak. D_{p} timooppeck 1.04

Let $C_{H}^{P}=$ control step amplitude at $T=1.0$
o $C_{p}=11 \cdots$ thine oplak.
Bydefin turn $\frac{B_{p}+D_{p}=C_{p}}{\text { Then, we estimate that }} D_{p} \simeq\left(C_{1}\right) V_{p}=\left(C_{1}\right)\left(\frac{1}{2}(U+L)\right)$

$$
\begin{gathered}
B_{p}=\frac{1}{2}(U-L) \\
C_{p}=B_{p}+D_{p} \simeq \frac{1}{2}\left(1+C_{1}\right) U-\frac{1}{2}\left(1-C_{1}\right) L
\end{gathered}
$$

see left.
$3 / 16 / 66$
Remilt of 646.535 for currew step at (1) observed in all fine compartinents. Exarine v a several hins.

$$
T=1.0 \quad 1.04 \quad 1.09
$$

(1)
(2)
(3)
(4)
(5) $.04404 \quad .04647 \quad .04943$
.2664
.2697
.2736
(2) $\quad .1627$
.1659
.1696
(3) .09808
.10097
.1044
.06091
.06351
.06666

$$
3 / 23 / 66
$$

Spaivatemoan wo th Bob Burke. We plotted two evoked reps fo one mivatine. got little encomogents
The opterpotertial louses This up.
for amplitudes below 20% of perk amplitude, it seems that pemitog slope gets steeper than from 180 is to 20%
This mijls sean to he foster de coy g, ks it is more likely op papotential, maybe due to some K or de permeability nicrease.

Cull real woyto haole this is to provide a Theory, which also accounts for the aftapbential.
Bob dodson that he does hone same more obvious two stage decays, lis he Tunths that intuition is incolved in these. Tisynaptie

3/16/66-3/n/66 pressed on with manscript of xerox of sane prepord shetch figures to pernit tokniy orgiove pencildrains to as dope
wrote dissection of cussents.
3/21/66-3/22/66 Anisly Jggo's visit of took hin to Boltninore. Saw Mornt astle, Dovies, Brundley of a mathematicion enginecer

$$
3 / 23 / 66
$$

Car Mouddy $(3 / 21,66)$ white showny Anisley around, ftold bob bushe obais ny eqnalizin tine constants of that some of his best deta woned he very surtoble anil That this provites rvidence, for Zun. He wes bery susprised tral this would he ridepandent of localions A totdhin he shonled seel some o/ hiss epsp on semilog flot. Planto talk to hin \& Phil obout it
today \& mayhe write shost memo. The noore if thing obow, the more of thins this desenes privity. Thy namscript on these tine condtanits dimes he prolishd off. press tatle is

Butconnder Equalizing T ine Constants and Electrotomi hougtho Dembitic Prees.
Possiblyeven suitable for nention at conference.

Theoretial
vagne coneppta $\frac{\text { levelspoth }}{\text { qualitature early sypts. }}$

$$
\begin{aligned}
& \text { anere eyplocil shmical } \\
& \text { infinfore tronge } \\
& \text { cride theory } \\
& \text { explisit }
\end{aligned}
$$

Experimentol

$$
\begin{aligned}
& \text { explicit quantitatine } \\
& \text { Anathpodel }
\end{aligned}
$$

$$
\begin{aligned}
& \text { gje ic in wh nu th models } \\
& \text { (1) greater contral of precision with few varidtho }
\end{aligned}
$$

manarytariables
greut need hare.
When certain detailed preacictions are not fulfilled experimentally, - unust ask: is this a trivial discrepancy or a valuable clue? of it is not trivial, is the thoong allwrong, or can one pimpoint a wrong assuption, or a failure of expt. To satisfy couditions that were
assumed thother words, what hunde assumed thother words, what hund of miomatch is resporsible? The cruy
istopinpoint the mismatch and
to juedge its significonce
$3 / 24 / 66-3 / 25 / 66$
Think above NINDB Comicil presentation next Wool. march 30. Phil Bob of Tom will present some of this material from this one rall joists effort, of K invirid me to contritutb also.
Believe it would be a good idea to give part of time to mohur The distinction between Theoretical Domain D Experimental Domain
Theoretical Domain
vague concepts + hypotheses more explicit concepts a hypotheses

emulated "
pedictardvolues \langle bast absemations

$3 / 25 / 66$
Mus plan slides for Wed \& for April 11
Wu the EPSP popes, may worn a very early paragraphs, headed

Theoretical dosuain ant experimental domain are fundamentally distinct. This distinction deserves explicit attantion, because it can sometimes appear to get lost in a presentations which aim at berg readable rather than pedaritica

Ir proper on Equalize tine constants, munoz A begin as follows:
d useful Equalizion time constants econ he given both physical intuitive meaning a a precise mothematical definition. Explicit presentation and illustration of this is Theppistipore of the present proper.

Afternoon 3/25/66 saw -Roger. Nicoll, who is a Medical Student fro Rochester, who is spendrog a year in Saluoraghin's lab- a has done quite of few experiments on the olfactory lent. He was suchired to implicate tufted cells in periods III an IV, bis for period III, he had come to realize that tufted cells could not account for the deep potential that we ascribe to the pramile cells. He seemed prettybrizht arid up to date with the recent literature.
$3 / 30166$
Togetherwith Prill, (as Babbara Alving on Aplysia) Tom, Bob-Bwhe \& K. 7_{0} - we presented some of spinal cord coorts to the Scientific Council of NINDB - Walsh, Derng-Brarn, Mactichol, Woolseg t zPhernace t. who kenew Zim.
sabood
I waslost \& o thers hod all mesented argmen as stasting from doma \& gradually establishog experimentitly that the soma picture was not enough - sost o/ getting oni into dentrites ly induction.
(1) Ipoited ont that MR purely theoretical \& that contas with spinal cond section helped meepone on the ground.
(2) A pointod out that research depends upon our expecting somethnig foom ova experimento : an axpicted result is setisforitation an an unaxpected rosult con he very vahable ilysibg but hen, as expt. get more complicated, wore quantitatire ant rophiaticated, owr phosical inturition is no lorger sufficientyateliable' or quatine saunce of espectations -Thio is where wathematicel Thory becomes essential. Then one con explore mi detail, what would happen if such a such of ywe do so 4 so tunder These particular conrifion. Compunter can answer to siy sizurficant fizures.
(3) Wherees the others mesented their comelts from the panto of heir of the soma \& working ant to discover the denbrites; nyy appoidh has been (sinice 5b) to assume the importance of the donbrites, aud eyplore the implications in quantilatine detail.

(2) ciagram of two compartinants
(3) 7ig. 6 of Ojai paper
(4) fasthans EPSP inen cits. O/presen poper
(5) stap traus AEPSP to oftain distorion.

$3 / 30166$
There were a number of questions from the Corncil, whentom spore - showing doubts obons. The impedance approach. Athinte especiolly niview of Tom's ohjection to vny worl "distortion", that the poper shondd make a rwore clearcut distinction betwreen Tom's experiment and my experiment.

Qlso, the equalizing linsmens waspoint out in talls and should be pronifd on ingroper.
Mus now concentrote firston necersory slides for Cpril,
Thenon finishing wrting poper Thenon finishing witting paper.
$\begin{aligned} \text { Tree } \rightarrow \text { oquov. cylunder fig }-Z_{m} & =1 \text { for } R_{m} / R_{i}=90 \approx 80 \\ \therefore Z_{m} & =2 \text { for } R_{m} / R_{i}=22.5 \mathrm{cin} 25 \\ \therefore Z_{m} & =200\end{aligned}$
Buiffcouse, dentrites themselves can be longer.

$$
\begin{aligned}
& \text { Pa/ti } 80 \text { could he } \frac{4000}{50} \text { or } \frac{8000}{100} \\
& \text { Rm/Ri } 20 \text { conet he } \frac{1000}{50} \text { or } \frac{2000}{100}
\end{aligned}
$$

Equiv. cylinter is $73 / 4^{11}$ chanio/ 5 goes \approx on $11^{\prime \prime}$ "canterss 3/4"miforoneng,
chaviof 10 , 3/4" conters, $3 / 88^{\prime \prime}$ mifmen h.
Qro for Tigs 142 of Bulb presentation, must check
back.

Slide Soqnence used (20-25 minutes) fairlyfort

1. Schernatic suumary of assumptions: tree to cyh irder to chain ofepts.
2. TRNS E, Unform EPSP; Three non-uniform EPSP
3. Syroptic cursenty spread current, net depol currant
4. O-Bulb-Phitops, Powell \& Shap. exp setup \& results
5. Scheinatic golgi plua frecords with 3 time feriods
6. Schanatic vibal olistraction of bulb abstraction

7, Computed mitral antidronic, intracellular t two eptiod
8. Gramile field computation
Q. Schematic Golgi phers serial reconstrnction Tuseasprop. for concludury remarks. of Gemmula
Ot thispoint, developed argument and condusions reached, to provide bosis for orientalion durniz next few shdes. This proned to he nifortaist. Zim had noted, dusing dy ram, that conpurion coved result without this.

4/28/66 Dieter hux dropped ly.
He is abou to return to Munich
He f Phil dod some AC drovr o/notoneuron.
\# Thy conld use uy so hition \& That includes \# The coupling resistonce.
$4 / 5 / 66$
Slide proparations were completed 4/1/66-4/4/66 shourd be ready from plotorreply late to day. Alsodeoned up un erous swall chores. Have leon fightur virus cold for obar wede.
 4/13/66 Got bodk from attluticr City symposium. Ther were oden 300 Newrophypiodegosts in atendence. Syypposiun was cuel reccived. Onequation ofthint tolk was alut no- aligument of Θ in Θ in period I. Avother wasonsyumnty op thee. Austurhai to do with Sowr Kathyn peen (Thoms) who seams to le interested in furtherstudy of deubrites of testing (14) assumptions. Wohllorsht savd he thought he keal of lechizono andion some relevon data. Htimas said he wos woukn with frog cesabellir sounty? Bodion A might wish to disauss some of the interpetations. Talbot (prom Seattle) said he has abs wobked on cerebellinn the diragrees with some of Eccles anterpretations. Af didouphorize referance electrode of the mitracellutar t eytracellular curren flows. Ididemphosize ridependonce of Btrodies. Woodbury said Patton is now Prop a arked if t woued vosiot sometivue. I talhed toCole on woy up alearud doni his Semion fereanch Suentist pesstiosi \& Berkely professorshop combo ghe hedenjoged Talk 47 att paper. at Philadelphia, hod goodvisit with Farley, Gerstein, Harmon, Sewis, Crain. Farby egosestam happoy ther; Sewis's groap mostly lroken up. Crain at Elistonin.
4/12 - 4/16 Shepherlel Keith Wac food around N. I. H. /4/20-4/21 sick leove to frially set oner flen.
4/25-4/29 Shortrersion of anmual report. Corseppandence.
Shashitrus + sut tremendoris pile of formanals, sepunts \& jurk mail + Sciences pritedup on desk \& tables. Clearnizdechs for getting bock to writing.

At College Pork - Met Larry Goldman UCLA Ph.D. conduction velocity Harold Gamer
Woofgong M. Schleidt turkey behavior fish behavior
There was some discussion a niteron in dendrodendritir synopses \& notion that there dendrites could remain passive.
Que man (fisthbeharior nobler who is dong some work with Hermon's neuromine) got the idea the my compartmental method should gone a sum of exponentials.
Goldman hodnot realized that \& hove the Aroniont solution for the finite cylinder. He also did not realize that t had $K \neq 0$ case to con ar different branching laws. the thought I was stuck with equivalent cylinder.

He cited Ubidman as having prifhoshed The
steady state Solutions for finite cylinder.

$$
\text { perhaps I.Phypiol (1952) } 118348 \text { Prophet. }
$$

Hessid tho gander rums a post-doe technician factory in his loft.
Goldman thin iss my finite cylinder results should be bought out. He definitely thinks there is more need for further communication of these results.

52266
Plen slide seqnence for 45 min talk at College Pork

1. Three Cajal neurones
2. Wicroeletrode insorma
3. Tronsient riesponze to stof: limisting coses
4. Cajal nensones of schervatir neurond (symopres)
5. Sehematic assumptions; tree to cylvides to chain
6. Tour deubritic locations
7. Two spotio tanporial sequences
8. O-Bulb; Parllips, Powell a Shap. exp. setup A rexults

9, Schanatir golgi phis 4 recorda (3 trie periods)
10. Soheriate mitral alstraction $\&$ bulf alestraction
11. Computad mitral antidsomic Vi, Ve tho oof.
12. Computed pramle fietel
13. Supprposition
14. Schenatic golgi phus 4 records
15. e. m. low prover, intial sec cson, grambe long.
16. high pownes faria of contacts

17 reconstructton fiom serial sections
18. Schematic golgi plus serial recoustinction

5/2-5/6 66 Thiswek, deamed upseereral corvefondence chores. Abs didreferce jof, Tooh cere of netting up semon foridohwark with ilojelguth. I gove tolk a Collgefank talkel woth prapp.

Katz of Thesleff compood musele epp in fohero of dippen dionster o correlated thiscuith The preasured infunt resistance. They found a pretty good, bu not perfect mopoctiality

This dejeruls upon the ΔG_{E} benig sinall enough that $\Delta R_{E}=\frac{1}{\Delta G_{E}} \Rightarrow$ input resistance.
Both Wartin of Latgt Thesleft trioct the epp peak as a pruely resistive phenomenorn. They neglect capocity of Heactance of the miprot impedance.
\#V Thus, there is a need for a better treatinent. \& could use a modification of the N.Y. Acaderry trectmat. Or \& conld do compartinental conpputalion.
In fait t already hone some compontmersal computations for a branchlet wnoch do show an effect of this tind. See p. 160
The Pussion contrituston is to combinie thid effect with the horente deNo of Condounis decremental conduction of branch rodke effect.

5/9/66 fode notes re ming older thoughts
fode notes re my older thoughts abow deveritic suelling of growth of more recent thoughit of opplysig thi togemmule If eulargemeno of gennmale is incolved, get both
(A) presyrapthe spewfirity
(B) reniforcement ly succers on pootsynoptic side.

Need to explore more fally how finning torgether with prolouged local effec would do this i Cfolder notes re dendrite 4 residual cursen fooh $\left(196 \xi_{3}^{2}\right)$?Relevanue of foo that gammies have loto ofvesides?
5/10/66 Five Russion repsints from the Ahst. o/ Boophppis, USSR academy of Scieinces, were rew to me ly Prof. Y. Arshowskie. At lithery tonslation, Wur. P. Depporte translated the filles of one poper forme orolly. One is on dendrites, other Hore on syncitia. The syncitia poper sems to go beyoul the cose cousiderel ly E.P. George Aust. 9. exp. Biol (1961)

$$
39 \quad 267-274
$$

The dendritic poper emphesijes the idea That dendritic numbirane should he actire, and that the some synaptic conductance change shoued produce a lirger amplitude of local EPSP ont in a dendrite than at the somay becouse of the larges inint conductonce, and that this could instiatean ingmese ini the denchitic periphery. They got the idea of the enlerged locel EFSP fromkats:

$$
\begin{aligned}
& \text { Katg o Thesleff } 1957 \text { g. Physiol } \frac{137}{130} \quad 267-278 \\
& \text { Mortin } 11455
\end{aligned}
$$

Saploce transforms he did no worls thrm
Bit moued give expressorg for
Completbien er erzor cel
of its derbiatínes
smilar to foctriate on hyperbolicfers.
1962 - Nitr lecod Pepper
ofter eqn (6), sentence on V^{*} would he less pruzzhin if it sofersed bods exphritty to eqn 2 Qeso, vy note, prefer differ st st inotation Vss oq (8) shoull he explicitly stoled to an anolytic rother thon a gropinizal result.
p.1077-end of Fop 91, add for isolatod potch ($I_{m}=0$). also troo hives bofore eq.(II) add" "total" to internal cursent.
p.1079 He still feels that eq (21) does not have its siznificonce sufficiently flogged. Qlso, he wonll litre to consider evern Greater generalization for $e^{z\left(z-z_{0}\right) \text { some }}$ emprical fen of z or $X_{\text {. bi h be hidrot }}$ sedur to fully appreciole the difficulty.

5/12/66 Saw barry goldman on Thus day ofternoon.
He had studied 1959, 1960 \& No Y, Aced. paper to be able to ask ne quartiong t tell me cohere more details would he helpful to readers like hin. He did not unid stashing wo th PDE. 1959 popes. Ht was not char to hin in until he was finished, That the rationale was tofund a general method to work ow terminal impedance for all possible successvoe ranching. Would lihemore early brief ry on approach.

Also, p.496, would birr more explicit tratnen of boundary conditions, wore like in NHRI report. Not obvious any $B=0$ \& $B=\infty$ correspond to what soy they do. If would help if $\frac{d p}{d x}$ were written on p.496, jus often V

This would help tor B.C. tolso for eq. 849 mp .499 , where Goldman sops he wasted a lot of time.
of. (14) coned he explicitly pointed ow to apply for both branches of also hare one can cite (10) for $d^{3 / 2}$
oho, this is first ploce where need Rm cons (Amp)
p. 506 He wasted a lotoftine on 29630 . Would helptoprovide clue let $y=\sqrt{\text { Rm }}$, seassaye of sole quadratic for y.
then square.
1960 popper - Appendix p.524 B.C. firstequ moybetoo muchatonce perhaps write on somacusred $I_{S}=V / R_{S}+C_{S} \partial V / \partial t$

$$
=1 / R_{S}(V+\partial V / \partial T)
$$

combined dendritic current for Mequal cylindrical trunks would be

$$
\begin{aligned}
& I_{D}=\frac{m}{r_{i}}\left(-\frac{\partial V}{\partial x}\right)_{0} \\
& =\frac{m}{\chi r i}\left(-\frac{\partial V}{\partial X}\right)_{0} \\
& \text { and } G_{D}=P / R_{s} \\
& =-G_{D}(\delta V / \partial X X)_{0}^{0} \\
& \begin{array}{l}
\text { Which hills even for seghoders } \\
\text { of dither dianatey. }
\end{array} \\
& \therefore I_{A}=I_{S}+I_{D}=\left(1 / R_{S}\right)(V+\partial V / \partial T)+\left(\rho / R_{S}\right)(-\partial V / \partial Z)_{0}
\end{aligned}
$$

p. 525 lime 4 should read "steady state" sothes thea fist steady.

Kefarisuld size $=C_{j}$

$$
\begin{aligned}
& \lambda_{12}=8 . \quad c_{1}=1 \\
& \lambda_{23}=1 \times \lambda_{12}=8, \quad C_{2}=1 / 4 \quad \lambda_{1,2}=\lambda_{3,2}=\frac{1}{2} \lambda_{2,3} \\
& \lambda_{34}=1 x \quad \text { 8. } c_{3}=1 / 8 \\
& \lambda_{45}=1 x \\
& \text { 8. } \quad c_{4}=1 / 16 \\
& \lambda_{6,1}=3 \lambda_{21} \text { an } \lambda_{21}=\frac{1}{4} \lambda_{3}, \\
& \lambda_{16}=.25 x \\
& \text { 2. } C_{5}=1 / 16 \\
& \lambda_{61}=.75 x \\
& \text { 6. } C_{6}=3 \quad \text { K рррй }=1 / 3 \\
& \lambda_{21}=.25 x \\
& \text { 2. } C_{9}=1 / 8 \\
& \lambda_{32}=.50 \times \quad \text { 4. } \quad C_{10}=1 / 8 \\
& \lambda_{43}=.50 \times \quad \text { 4. } \quad C_{11}=1 / 4 \\
& \lambda_{54}=1 . x \quad \text { 8. } \quad c_{12}=1 / 32 \\
& \lambda_{2,10}=.5 x \\
& \text { 4. } \quad c_{13}=1 / 32 \\
& \lambda_{0,2}=10 \quad \text { o. } \quad C_{14}=1 / 32 \\
& \lambda_{10,11}={ }_{0.5} x \\
& 4 . \\
& \lambda_{n, 10}=10 x \\
& 8 . \\
& \lambda_{3,9}=.5 \quad 4 . \\
& \lambda 9,3=.5 \quad 40 \\
& \lambda_{2}, 12=2 . x \quad 16 . \\
& \begin{array}{l}
\lambda_{3,13}=1 . x \quad 80 \\
\lambda_{4,14}=1, x \quad 8,
\end{array} \\
& \begin{array}{ll}
\lambda_{12,2}=.125 & 1 . \\
\lambda_{13,3}=.25 & 2 .
\end{array} \\
& \lambda_{14,4}=.5 \quad 40
\end{aligned}
$$

of. 8 used 草cestatery λ
Stwesenveran tomake $\lambda_{0,12}=32 . \times \lambda_{12,8}$ showed be 1. and $\lambda_{12,8}$ shoued lo 32.
$5 / 13 /-5 / 16 / 66$
fiuished indorodual anmel reprort. aso did some libray research.
Now mis get boch to EPSP popes of then Bulb poper.
SPatty becuse may wosh to exani- sympptic cunent in uoch icases. Chohupon Branchlet alc. - Deck 732.210
dated $11 / 4 / 63$
Thi deck was for problem. 732.213
Now check bock on foldes ϕ ontpuits
732.201 10/18/63 where hod to veduce no.0/gts tadd dpen leme
$732.202,203$ errons.
Note, asinijai $\quad \mu_{i j}=\frac{g_{i j}}{c_{i}} \quad \mu_{j i}=\frac{g_{i j}}{c_{j}}$ borothages
$\left.\begin{array}{l}\text { butim } \\ \text { Nonesiprasem }\end{array}\right\} \lambda_{i j}=\frac{g_{i j}}{C_{j}} \quad \lambda_{j i}=\frac{g_{i j}}{C_{i}}$ forcherge
732.211 was $\frac{1}{3} \sqrt{22}$ el version $\frac{1}{3^{2}}(13)$

$$
\begin{equation*}
6 \cdot \sqrt{2} 2 \tag{16}
\end{equation*}
$$

Coned do square but
winnot plot.
Qfwow valtoge, need Kappa. $\propto \frac{1}{C_{j}}$

Thoughts about title. Probably letter to stest with word, neuron ar rowe, rather than theory.

Neuron Theory Neural Theory
Neuron Biophysics
Naurophysiology in Theory and Practice
Nouron Theory and Practice
Nerve Cylinders and Trees
Nerve Cylinders, Trees and Synapses.

To convey idea of berry practical t useful.

Books are instruments of communication, and the only objective test of their success is whether they are
5/17/66 bought and read.
An article in science "Book Preblishniz-and Bookkoping"

$$
13 \text { Toy } 1966 \text { - Vol. } 152 \text { pp } 871-875
$$

provides some hard hooded advice from an editor of We graw-Hill.
To write a good boohtahes: (1) competent group of subject inecessity
(2) good planning
(3) hand work
\leftarrow oifrionked
obvious

Worst way to write a book is to sit down and start writing. Don't thibop wasting. A gootbook unis be built.

$$
\begin{aligned}
& \text { need Clear workable concept }\left\{\begin{array}{l}
\text { focus of book } \\
\text { what covered } \\
\text { what excluded } \\
\text { purpose served } \\
\text { porwhom intended }
\end{array}\right. \\
& \text { poription: }
\end{aligned}
$$

p. 872 Anticipate book jacket description:

Can you crystallize what tho book will do in a snigle sentence, and so accurately that no customer will be misled? Will this copsule summary appeal?
Will it promise answers to questions, help to the floundennig?
\& dar you merely gong to conduct a pleasant ramble through your subject, or are you fashioning a working tool?
s1² 873 Who are the prospective readers? How mommy? How lore a group? should he able to provide prublistor \& editor estrinate/size ofardièncepool.
ie. Namephypislogits, Nousosurgeors, Neologist, gen. Plyniol, Sisphupirs.
872 Af the book is to he indispensable to the weser, the res the needs of user (hisbevel of understanding thisproblems) are indispensable to the author. This is a worinangy aganist loading the book with Foo many loose ends of doubtful value. Better leave the book shorter, with possibility of sequel on revised edition lotr. Not catchall

$5 / 19 / 66$
Resuned writing EPSP poper
Decioded to setmp two computctions.
615. molffication of 645. Series
only in setting EPSP prak $=0.01$
615.010 set $\varepsilon=0.274$ mi (1) with renge
615.080 set $\varepsilon=5.0 \mathrm{mi}$ (8) with range

There are just to fit. Then resm for plot.
5/20/66 Put in 645.161 poolougtime, 5 get 50 良 doung
Sot lock 615.010 initiol $\varepsilon=0.274$ mede EASP onvere.tisig

$$
\text { Found Epack }=0.256
$$

Shope of EPSP, with futa conprovelwith 2.74 for 685.1 MI of oscale change, is negreitle : ler then thishereof hine.
615.080 mitial $\varepsilon=5.0$ mole EBP 842 totringh

wofiribte shapechangen (1)

$$
\text { is. } 4 \% \text { change in (8) }
$$

$$
\text { Found } \begin{aligned}
\text { Epeak } & =2.6 \text { comporal woth } 49.9 \\
\text { of } v_{\text {peoknin }}(8) & =0.062866
\end{aligned}
$$

$$
\text { of vpednin } 88=0.06286 \text { at } T=.09
$$

comporad woth 0.602 at $T=.08$ in

Results of linearity check for 10 \% micerese indicate that roughly proportoncel $\frac{5}{6}$ $\left(1-v_{p}\right)$
noe nearly prop to

$$
\left(1-0.9 v_{p}\right)
$$

5/20/66
$\begin{aligned} \text { Pitin } 6 / 5.020 & \text { op } 2 \\ 6 / 5 \cdot 100 & \text { spt } 10\end{aligned}$
Gotbock 5/23/66 gore del Catetlo lecturat in ofternoon
615.020 inctial हof. 4408 gore EPSP. .01084 88bugh

Fornd $\varepsilon=0.4064 \mathrm{in} 2$
615.100 nictide ε of 23.4 geue EPSP $=.04845 \quad 384 \%$ hog h

Foul $\varepsilon=3.08$ mi (10)
Setup 615.030 ant 615.040 on 5/24/66
$5 \sqrt{23 / 66}$
Setup 615.101 tasting 10% vicrese of ह in at loth EAPPrages

$$
\begin{gathered}
3.083453 \text { to } 3.3918 \\
234.35 \text { to } 257.79 \text { 委 }
\end{gathered}
$$

615.001 tashor 10% micreare of 2 in allforlton nages.

$$
\begin{aligned}
& .1893146 \text { to } 12025 \\
& 1.15202 \text { to } 1.2672
\end{aligned}
$$

Pupose is to charaterige linearity tron-hisesity at these operating points.
aloo setup 615.041 with 10% micreare
and 45.132 -to conseat Evohe 615.031 witu 10% mierease Thatgove EPSP 1 \% too large $<$ conset later
$6 / 3 / 66$
Sesiniar : become of many miterroptions, only got Thru slide ton syroptic curranto Soveralquestions come up tho tway be worth noting.

Right at beginning, Walt Freygang asked whe the glie did not vobe case nore loke axon in oil thon ayon inair. My answer is that foct that extracellular amplitides are less thon 1 mu proves That extralblen resistance is much lover than intracellulor of menbrone resistonce. Anvde onis point also in discusion at Tarley's horve in Philadelpha. Hreais to be a point not videly appreciated! Only catch is that Giant Extracellular ainght he gelling niside oily layer, wile ordivary othacellular io outside.
Walt was mot convinced, by Gisuol examination, that Bob Burke's EPSP loohed lobr mine. This emphasizes the need for the quantitative chart.
Qro, when A soy that shope is cons on for oll amplitudes, anivie coreful to soy that Ado not neean to intrly that summation needbe syndironons. Slighet asyuchiony can chonge offetive shope of cornductonte

Raproport waited to know why G_{E} of G_{r} separatel.
\rightarrow anod $G r$ reprosent noo of menbrara \& G_{E} nepresents potential cetine patches.
Qse, hewanted to hnow any condre tonce rother thon cushes. Answer is Mon-hisanity When toceal

5/31/66
Sot bock 615.001 and 615.101 and prepored linearity of Echart.
poin 615.081 \& 615.061
$6 / 2 / 66$
setup 615.102 to firlpeak tine of E PS P for port E nin (10)
bie with Zinchangedtoo
Sopr $Z_{m}=2.0$ madug $Z_{i j}=25$
Coupme $z_{m}=1.0 \quad 7 i j=100$
$z_{m}=4.0 \quad Z_{y}=\frac{1000}{16}=6.25$
615.012 for cpt.(1)
615.005 for uniform inhifition fat -. 05

Nowhowe typed peges 1-1 Huru1-6 openets on sulye is of rlape $2-1$ thrm 2-21/2 II" "lu E thimerity
Decile :folower Et ionsicit coures EPS Proeres in to resemble others forther ons. This moy leworth disarsion a ponting ons.
Settle aboid figives \& tobles \& final conte up.

* Chakoor shides or lade Marsholl semmar 7uidey $5 / 3 / 66$ weeplan sinilear to a thantic aty + Colloge park sup. 15 os p. 154

$Z_{m} \lambda_{\text {ij }}$ foot pedetime hoffway op holfiny dom halfurdth, $4.0 \quad 6.25 .54 \quad 1.8 \quad 1.26 \quad 1.01$
3.21
2.20
$2.0 \quad 25.190 .86 .67 \quad 0.42$
1.88
1.46
$\begin{array}{lllll}1.0 & 100.09 & 0.41 & 132 & 0.19\end{array}$
1.21 1.02 5.1 men

$\left.\left.\begin{array}{llllll}4.06 .25 & .02 & .135 & .115 & .045 & .405\end{array}\right) .36 \quad .1645\right)$

Brielly for (10) get ahmot pactor of Fuo
(f) (1) get are like 10% dom 20% w
$16 / 3 / 66$
Gotbode
615.081 for 10% micrese of E in (8) fob 60 th raves got 9.47% at.on ant 4.62% at 10

100.
comprod with 250

$$
T=-11
$$

615.005 unstom fort tountioi $g=7.85$ at $T=\cdot 18$
fiv now setap for blow trousien
Setup 655.005 some with slas tion, fit at $T=.35$
615.103 Enin(10) for loug ford 1.8 as ther dipeck
615.082
(8) Gremene quotelal data conls
615.013 fit with $\Delta \bar{t}=.005 \quad \lambda_{y}=6.25$
$6 / 7 / 66$ got bock obone four dedes. 082 hol been goofed by gemem in
-103 forid $i=1.8$ aspeak with $\lambda_{i j}=6.25$

Therefore setup 665.002
with

$$
\begin{aligned}
& \lambda_{17,2}=4_{0} \times \lambda_{0,17} \\
& \lambda_{2,8}=10 \times 20,9 \\
& \lambda_{0,8}=-10 \times(0,17 \\
& \lambda_{18,12}=32 . \times \lambda_{0,18} \\
& \lambda_{12,8}=1 . \times \lambda_{0,18} \\
& \lambda_{0}, 8=-1 . \times \lambda_{0,18}
\end{aligned}
$$

of for T.C. set $\lambda 0,17=0$.
This correction was recognized as necessary after eyamig onpio of 665.001 which yielded

$$
V_{2}=K_{2} Q_{2} \geq 1.0
$$

and $V_{12}=K_{12} Q_{12}>1.0$
$6 / 9 / 66$
On $677 / 66$ Astup 665,001 as a modification of the old Brauchlet \& (732.2 dated $11 / 4 / 63$) See pp 159-160 of this notebook gov en pin folder. One modification was to introduce transient E. another was essoneons scaling of λ from E to pert. company. A forgot the following important point If The $E \in$ source pie is regarded os haunt unity for the some size ass of il, we hove $Q_{1}=V_{1}$ and $Q_{8}=V_{8}$
Bit, for allothercpits $V_{j}=\frac{C_{1}}{C_{j}} Q_{j} \quad K_{j}=\frac{C_{j}}{C_{j}}$
Now $\lambda_{i j} / \lambda_{j i}=c_{i} / c_{j} \quad$ seep. 160
also $\lambda_{i, 8} \propto \frac{q_{i, 8}}{c 8}$ and $\lambda_{j, 8} \propto \frac{g_{i, 8}}{8}$ forsame ε
Bit, if ε_{i} is doubled as C_{i} is $g_{i s}$ is halved, to make same amivepomburton.
chore
Then need $\lambda_{i, 8}=\lambda \hat{j}, 8$ Tiumphes intort anent
But, as was correctly provided in 732.213
$\lambda_{\text {sink, } i}=\frac{C_{8}}{C_{i}} \lambda_{i, 8}$ to insure that the synoptic Current is governed lye voltage, not by Q.
error seep. 180
665.102 romelts at rigit show that ε in houdict (12) of (2) eanses larger $v \min (12)(\operatorname{bon} 5 x)$
but smallor vin (2) ($\sim 5 / 12$) letor
thence." "in (1) ($\sim 1 / 2$) later
The area foctor of \& foctor wes $\frac{4}{32}=\frac{1}{8}$
suoud also get input aorluctence or resistance
Nayt 665.103
dofor (13) 8 (9) both attachal t. (3)
$6 / 13 / 66$
Saw K, Phil \& Bob on 6/10/66 rejoint poper Plilconcesved with offerevefiter might resistance and comphoz resistence
Bob hos an ousthio

- propored tisgerad protsynaptic rather than chanical

Relinsarity. Ippoitefout ot otherswere interest, that rear linearity of deficien hivearity are evidence aganist local sesporse in dendrits.

6/13/66 got tode 665.102 Bravcklet G-E see p160ه172 Bfore T.C., had thansin E to (2) only These ansmens suly at toerron, sed p. 180
in (1) peak $Q=.017865$ at $T=.19$ $V \xlongequal{P} .017865$
in (2) peak $Q=.03056$ at $T=.09 \quad V=.1222$
in (12) peak $Q=.0028257$ at $T=.15 \quad V=.09042$
apa T. C_{1}, had transin e to (13) only
in (1) peak $Q=.008754$ at $T=.27 \quad V=.008754$
in (2) $\operatorname{prak} Q=.01240$ ot $T=.15 \quad V=.04961$
in (12) $\operatorname{sech} Q=.01892$ at $T=.08 \quad V=.6054$
see loft.

$$
\begin{aligned}
\text { Ietre } \lambda_{i j}=6.25 \text { where conpuatwon } & =\frac{1}{5} \text { of total nomen surfer } \\
& \simeq 10^{4} / 5=2000 \mu^{2}
\end{aligned}
$$

Contort area of demob cluster $\simeq 200 \mu^{2}$ or $\frac{1}{10}$ th
Ii soult be relation g large，becorse not core

$$
\begin{array}{rlrl}
\therefore \text { let } r \lambda_{k j} & =250 ; & \text { let } g_{j k}=25 ., & c_{j}=1, c_{k}=0.1 \\
R_{j}=1=G_{j} ;
\end{array}
$$

also，let $g_{k}=g_{A}=\frac{g_{j}}{10}$ where $g_{j} / g_{j}=1 / 2$ ．⿹勹口

$$
\text { Then } g_{j k} / g_{A}=l v_{05} 250 . \quad \frac{g_{k}}{c_{k}}=\frac{1}{\tau_{k}}
$$

Setup $66 \% .001$
Rall Elec.Couphiz.

$$
V_{k}=9 f+16
$$

If increase $\lambda_{0,6}$ to 5 ．say，then $\lambda_{6,8}=-20 .+\lambda_{0,8}=-5$ ．

$$
\begin{aligned}
& \text { chain of fine }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\lambda_{6,8}= & =224,9+\frac{\lambda}{0.76,}+0.1 \lambda_{0,6}
\end{aligned} \\
& \lambda_{6,5}=25 . \\
& \lambda_{5,6}=250 \text {. } \\
& \lambda_{0,6}=1.0 \text { if }
\end{aligned}
$$

6/13/66 Talhat with Phil on tatiphone
Must compute on tramient appects of Coyphoj aumpedence. D, Cr argni hodds orly if couphy nensitance way low couper d to normal nexprane of neenthane lme const.
Tire Cot Chain phes suall monriane courpontinu (k)
0

$$
\begin{aligned}
& Q_{j}=C_{j} V_{j} \quad Q_{k}=C_{k}\left(V_{k}-V_{A}\right) \\
& I_{k j}=g_{j k}\left(V_{j}-V_{k}\right)=g_{j k}-g_{j k}\left\{\frac{Q_{k}}{C_{k}}+V_{A}\right\}=\lambda_{k j} 9_{j}-\lambda_{j k} q_{k}-\sigma_{j k} L^{2} \\
& \frac{d Q_{i}}{d t}=I_{i j}-I_{R_{j}}-\frac{V_{i}}{R_{j}}=-\lambda_{j j} Q_{j}+\lambda_{j i} Q_{k i} Q_{i}+g_{j k} V_{A} \leftarrow \frac{z_{i}}{g_{i n}=25 .} \\
& \text { where } \lambda_{j k}=g_{j k} / C_{k}, \therefore \cdot g_{j k}=\lambda_{j k} c_{k} \\
& \frac{d Q_{k}}{d t}=I_{k j}-\frac{V_{k}-V_{k}}{R_{k}}=\lambda_{k j} Q_{j}-\lambda_{k k} \lambda_{k k}+\lambda_{k k}+\frac{t_{k} k}{L_{k}} \quad V_{A}\left\{g_{k}^{\prime \prime}-g_{j k}\right\} \\
& \lambda_{k k}=\frac{g_{i k}}{C k}+\frac{g_{k}}{\frac{c k}{k}} \\
& -c_{k} V_{A}\left\{\lambda_{j k}-\frac{q_{k}}{k_{k}}\right\}
\end{aligned}
$$

undor R Rewlen, greloger
If Afterheton', then

$$
\begin{aligned}
& \frac{d Q_{A}}{d t}=I_{B_{j}}-\frac{V_{A}}{P_{A}}-\frac{V_{A}-E_{E}}{R_{\epsilon}}=\lambda_{k_{j}} Q_{j}-\lambda_{j k} Q_{k}-g_{j k} V_{A}-\frac{V_{A}}{R_{A}}-\frac{V_{A}-F_{c}}{R_{e}} \\
& =\lambda_{j_{j}} G_{-}-\lambda_{j k} Q_{k}+G_{\epsilon} E_{\epsilon}-V_{A}\left(G_{\epsilon}+G_{A}+g_{j k}\right)
\end{aligned}
$$

Suthisproblen, generate very lorage shap trausient in The prespraptic comprastumen ($N 0.7$) with a lorge conbutonce change o see what this does to the postsynopter nuentrane compart $(N 0.6)$ o the chain of fore comprastments.
wehave (b) as $1 / 10$ of reg-cpr.
vary passine loss from (6) fom 1. to 5 .
is. the sibsyaptic
il. Thie subsyuoptic menbrane corductance.
The other thing that conhe varied nore is the natio of $g_{6} t_{0} g_{7}$ pormere \& also the mage of the excitotory
condrectorce in (1)

These correction dependence relatiois for $\lambda_{0,5} \lambda_{0,6}$, to, are needed beconse compartments 6 of 7 hone sote tarans intolthem whoch ore mot really ow of the others.
l.g. $d Q_{7} / d t$ hastems $\lambda 7,5$ of λ_{2} e

Shich are mimpertan to
lusare not really ow of 5 of 6 inaddition to whot is already ow of them

6/14/66 Setup 666.101 with tifechanos of (5)
ordinary $\lambda_{i j}=6.25$
but $\lambda_{6,5}=25$.

$$
K_{b}
$$

$$
\lambda_{16,5}=25_{0}
$$

$$
\lambda_{5,6}=10 \times \lambda_{6,5}
$$

$\lambda_{16,5}=25$.

$$
\lambda_{15,16}=10_{0} \times \lambda_{16,15}
$$

In thiscose, (7) $+\left(17\right.$ become Q_{A}, and at firt $A_{A}=C_{k}$ bullater mizht be

$$
\begin{aligned}
\therefore \text { mow } \lambda_{5,7} & =\lambda_{5,6} \\
\lambda_{15,17} & =\lambda_{15,16} \\
\lambda_{6,7} & =-\lambda_{5,6}+\lambda_{9,6} \\
\lambda_{16,17} & =-\lambda_{15,16}+\lambda_{0,16}
\end{aligned}
$$ different.

$$
\begin{aligned}
& \lambda_{0,7}=1 .+K_{10}^{12} \times \lambda_{6,5} \\
& \lambda_{0,17}=10+4,17 \times \lambda_{16,15}
\end{aligned}
$$

Useypt. 9 as dump, then

$$
\lambda_{a, 17}=1 \cdot+12 \cdot \times \lambda_{16,15} \text { conbealjentel }
$$

Use $\lambda_{0,7}+\lambda_{0,7}$ tocorrect for $\lambda_{5,7}+\lambda_{6,7}$ e東. K $25 . K_{7}$

$$
\begin{aligned}
\lambda_{0,7}=-\lambda_{5,7}-\lambda_{6,7}+10 & +12, \times \lambda_{65} \\
\lambda_{7,5}=\lambda_{6,5} & \vee \quad \lambda_{7,6}=-\lambda_{5,6} \\
\lambda_{12,15}=\lambda_{16,15} & \lambda_{12,16}=-\lambda_{15,16}
\end{aligned}
$$

But then $\lambda_{9,5}=1$ ant $\lambda_{0,5}=-\lambda_{2,5}$

$$
I_{12}=1 . \quad \lambda 9,6=1 . \quad \text { an } \lambda_{0,6}=-\lambda 7,6
$$

also $I_{80}=2.718282 \rightarrow \lambda_{r, 12}=\lambda_{0,9} \times Q_{11}$

$$
\begin{array}{ll}
\lambda_{11,10}=25, \lambda_{0,11}=250 & \begin{array}{ll}
\lambda_{0,12}=-\lambda_{0,9} \times Q_{11} \\
\lambda_{9,7} & =120 \times \lambda_{0,9} \times Q_{11}
\end{array}
\end{array}
$$

Todoy, Ki Fank said he thouglt my Port I mosnsecript plunged into quidkly. Will discuss more tomossow
6/17/66 Lupur resistonce at (13) $\propto 2.77$ also the pecknog order of steody stale voltages comes out correctly.
Hor Etransion to (9) get

For Etransian to (13) get estimate

peakin (13) is catier, presumobly becanse of larger $\lambda j j$ This conses recoul peds in (3) tobe eeslier avblergei then lst, bi presumably swoller area miter curre, becons The peak ini (1) is slightly smaller aitsig. larlier.
$6 / 16 / 66$
Yester doy wrote mano to modify of shift emphosis of Bob Burke's onthine for join EPST poper.
Todoy, incheking over St.St solution of 665.003 , discovered esror in $\lambda_{10,2}, \lambda_{2}, 10$ ratio seep.160 Theproprom, asolso uzed 665.002 p.174 anl previos 732.2
hol $\lambda_{2,10}=1 / 2 \times \lambda_{12}=4$.
$\lambda_{10,2}=1 \times \lambda_{1,2}^{1,}=8$.
miplyiy that 10 was twire as large as (2) A hance tha (11) wos 4x "1" (2) Thismode too lorge a posstive load. tupaticulor, it mode my voltages come on wrong por the koppos intended.
Todoy, correctod this essor.
Ql20, St.St, solution enz distionbel by $\lambda_{0, \pi} \neq 0$ This now vode hritivicly gero of sef equal to 1.0 * zerotime change.

Neur 665.013 encorporates corrections. see rosults at left

6/21/66 nofer bathto conousation $6 / 17 / 66$, The reason why R_{A} / R_{c} is important to whother EPSP is pensitive to prortsyop tic hyperpol. \# hove 10 mV hypropol, and if $\mathrm{Rc}_{c} / \mathbb{R}_{A}=1 / 8 \mathrm{Ra}$, then sesting hyperpol is 9 mV across R_{A} and 1 mV acrons R_{c}. The Imv aurons Re becomes a restring leak \rightarrow contic. to baseline from which EPSP sises. A only 9 mv isabled to EPSP drichop protacatial, when ayoual in trion gos to EC Note, anming $R_{c} \gg R_{E}$, then all of 10 mV ends up ocroos R_{c}, but ouly this minics resting diop occon R_{c} adds to The EPSPdrionsppot. If $R_{E} \simeq R_{c}$, this will be reduced further to 5 mor les rating.

Bu vote, if torminal action potential is slow, os it wos ni 6 elod 201 , then there is less diphosir poblem.

Here we tri to Vrestore diphovic problem
tivorber for fost actionpotertial bike tranoien in (7) should inacase passothe condretonce of (7), this con be done in the dependence selation for $\lambda_{0,7} \mathrm{prim} 7_{0}$

$$
\frac{R_{C}}{R_{A}}=\frac{\lambda_{07} \times C_{7}}{\lambda_{06} \times C_{6}}=\frac{g_{07}}{g_{06}}=\frac{7 \times 5}{1 \times 10}=3.5
$$

$$
\text { ofti T.C. } \frac{7 \times 5}{}=35
$$

6／20／66
Got tock 666．001 $F 666.201$ refer bode to pp 176 \＆178
666.001

$$
\begin{aligned}
& V_{5}=Q_{5} \\
& V_{6}=10 . \times Q_{6}=V_{R}-V_{A} \\
& \text { setup new } V_{10}=V_{6}+V_{8} \quad \text { is. } \quad \sigma_{0,8}=1 \\
& \sigma_{10,6}=10
\end{aligned}
$$

Founst peak at $T=.43$ in（1）
$T=.04 \operatorname{in}(5), 081$
chyshosic with mogpoals at $T=.25$
peck \＆-.09 at $T=.04$ in（6）
This is the chop acsoss couphing meentrome Suich is neg for all volueo is．$\left(V_{k}-V_{A}\right) C_{k}$
afta πc ．
5 Fins layp couphny conductonce $\left(7_{0}, 6\right)$ ． 028 got ridof dipharre featios in（5）puhnurat $T=.05$ alro peah in（1）Tegond $T=15$
pechot -.086 at $T=.04$ min（6）
ridisicouly slestety les then bepre．
？istuis hie to mpor vesidance？
666.201 puek V_{7} wat 0.84 at $T=.05$ ，gane $V_{6}-V_{7}$ path $=-.64$ at $T=.06$

年合就．

 peak $V_{5}=-073$ at $T=.1$ orunch slower altogther．

Alroget book 666.001B \& 666.202
$666.001 B$ has summer (10) for V_{k} that previons.001 didnot hove. also got sterdystole inpul rewstance of (b) comes ont to 0.3694 also got plots, lunt scales not all suitable
Again got dipharic V/s for nosmpl menhane contas ressitance.
of not dophanir wran " 5 twos sueller.
Visturns diphashic a little earhier than $V / 5$
Whereas, with $5 \times$ susuller Roulor senitance.
V_{k} not diphasic, because V_{6} decaysfoster is. it follows 8) (fltesy meoming that V_{k} follous shatter ios.

- $(6 / 22 / 66)$
666.003 When $\lambda 0,6$ inceend from 1. to 5.
stody state ingm renstance fell to 0.3218 at (6)

$6 / 21 / 66$
Got back 665.014 which ran well excep that missed early T vohes for (14) ofter T.C.
setip 665.014 B to get Thite, aho st. st. mpje renstom a $2(14)$
o seploce ε at (5) with Eat (4)
$665.101 \ldots 16 \times(.13375)=2.14$
Here found stst. mimn resistance at (9) $\propto 8 \times .28=2.23$ whereas prerionely at (13) $\propto 32 \times .0865=2.77$
(ropertochto 665.013)

Peak
Pack time

(1)	$\sim .00358$	$\sim .75$	$\sim .0036$
(4)	.0126	.20	.2023
(5)	.0337	.11	.53926
(14)	.00536	.28	.178

(1)	$\sim .0032$	$\simeq .70$	$\sim .0032$
4	.013	.16	.208
(5)	.00913	.28	.146
(14)	.0198	.08	.633

Note, peati in(4) is cerliest whith Es in (4) nextearlist with ε in (14) beceme chorts $\lambda_{14,14}$ veglaye leart eally of theses the with ε in (5)

6/22/66 telhodwith Phil \& Bob in oftesmoren firmed up outhie
$6 / 23 / 66$

* Shoud chak von-lineer summition in wohing'
* Branchlet, becoure this get larger depolo
 615.554 [${ }^{\circ} \frac{2}{q} \operatorname{cose}$ of $\varepsilon_{\varepsilon} \operatorname{in}$ in (1) (4)
to test time to peote for these coses re plot of cht \# bs thie to peate.

Setup 664.115
.125
0.135

个boprenoon 0.145 rpartatiop. $71,80,112-114$,
Vary duration (4durotions)
anplied at (1) often and applied at (1) often and Tformiform case
\qquad
Plan 665.101 to work on MG, FDL problem uning tranch ing. sofer tock to p. 47 \& Pp. 124, 131
slow MGdone $v_{p} \simeq 1.2 / 70=.017 ; T_{p} \approx .6$
fort FDL alone $v_{p} \simeq 1.55 / 70 \simeq .022 ; T_{p} \simeq .2$
Etpect to gain non-linearitity overlofprisp on git. (3) Pf brandurg

$$
\text { Ch } 3 \text { is } \frac{1}{8} 0 \frac{1}{5}=\frac{1}{40 \mathrm{~m}} / \frac{1}{\text { sigiace}}
$$

Try first for sparate EPSP. 3,485 are $1 / 20$ Th
T My Epeale $=1$ in $3,4,5$ for slow 14 , T.C, $\lambda, 1$
Try \& peak $=2$ in 3 , for forst
Thereguesses are probobly on low side; theyareberd on 665:013

$$
\text { i/ wot fost ant } \varepsilon=\operatorname{in} 283
$$

Now, gobode to 666.2028 .203 which blew up whereas 666.201 did not.

There are the attemf to treat Coth presynoptic and postsynopstic conductonces.
Only chet to blowng up of 2028.203 is that puiporely uade A_{y} smaller of Elarges, bis prositly these is a lost card or something of this sort due to gromlins. Hopioy it in not gremhis, sestore $A_{7}=12$. and Eas loforie, bis undze Efoster wion rate consts of 50 .
The prypose of oll this is to chack hunckes obout The offect of $R_{A}>R_{c}>R_{\epsilon}$ momipulations upoh tramsients under hyperpol.
with $K_{7}=12 . \quad B_{7} / R_{6}=12 / 10 .=1.2$
homern, vian $\lambda_{9,6}$ hecomos 5., get $\frac{R_{7}}{R_{b}}=(1.2)(5)=6$.
of This works, Then try SK. St.
as a precantion, forst.st., make $d_{0,9}=0$ for initid set
Then for zero T.C. \& for Ist T.C. set $=25$.
Look to see whether st.st. in (7) is fros or nkg.

$$
666.204
$$

$$
\text { protilate } 6 / 23 / 66
$$

was neg in : 2028.203 bit not sus why.
$6 / 23 / 66$
Thinhuy bant 666.001-666.003 see tp.182-183 +p.176
Here, hove voltage source from axon assumed, but explicitly michude
both resistance o capacitance of the contact membrane. If there were no contact capacitance to consider, then could setup just the way A setup E, namely, synoptic current $\propto\left(V_{A}-V_{k}\right)$. Whit the above calculations have done is to imply that contact copracitance is always $1 / 10$ th of ediniary comprastmental coprocitonce, and the contact resistance has been decreased by foetor of 5., and also, in 666.003, increase by factor of 2. What happens is that a bucking potential developes across contact impedance, and $V_{k}=\left(V_{A}+C_{C} Q_{C}\right)<V_{A}$ because Q_{c} is neg. With large R_{c}, time constant is large enough that Q_{C} decays more slowly than V_{A}, \& V_{k} becomes diphosic.

With surall R_{c}, time constant small inorg to permit $Q C$ to decoy fasternoigh to be smaller (abs.vohe) than VA;
then V_{k} remanis pood.
When V_{k} is diphoaric V_{5} is also diyphasic but V_{1} is not, it is briefer
A check on this intuitive reasoning is that if Gg . 6 is made much smaller, so that C_{c} is smaller, but R_{c} is compensotorally decreased ($\lambda_{0}, 6$ micreased), Then V_{k} should hecone more nearly proportional to VA, because $C_{c} Q_{c}$ becomes nelly small.

$$
\begin{array}{r}
\therefore \text { Setup } 666.004 \text { with Kappa } 6=50 \\
0,0,6=50 \\
\lambda_{0,6}=5 . \text { hepert.C., 25. of T. T.C. }
\end{array}
$$

late $6 / 23 / b 6$

see where variable duration of squares fit here

6/24/66 moming
Dut in 615.501 very fort have (50.) for uniform sumbe ant $615.042 \mathrm{zm}=4$. with ε at (4)
(1) \leftrightarrows (4) is $3 x .4=1.2 \lambda$

Comprewith (1) \longleftrightarrow (7) $6 \times .2=1,2 \lambda$
6/24/66 Returm to ow hine, Phil had typed up 6/23/66 and to ploto A propared lote $6 / 22 / 66$
Plotractually stinulatad to compurtations A setup yeitroby. There are turee plots.

F means fost tians 25.
5 means slowtrons 10.87 $\begin{array}{cc}\text { decied to setup VF } & 50 . \\ \text { VS } & 5 .\end{array}$

7 7jol
note that uijform coses hove lenger WHA/TP retio

Showed see where Four Eduration realts fit den decidedto do 4 dunatoors at (1) Ifor all

7ig. 2
tre $\mathrm{Cl}=2$

\qquad

\qquad

\qquad
\qquad

conet quanics ss ke vis

3ing at $x^{3}(y)+8$

Cosenthal $3 / 9 / 66$

Cable equations

Belamp atp. 113

$\begin{array}{lllllll}\text { Ratio } & 3.44 & 3.27 & 3.44 & 3.44 & 2.47 & 1.64\end{array}$ \uparrow
$\frac{\text { peak to } 1 / 2 \text { donn }}{\frac{1}{2} m}$

$$
R_{a t-0}=3.75
$$

$$
3.75
$$

2.48

$$
\begin{aligned}
& 646.150 \\
& x=\frac{.00955}{(.1662)}=.0575
\end{aligned}
$$

Whreas $.00955+(.044)(.8338)$

$$
x=.0367
$$

646.140

$$
\begin{array}{r}
x=.0323 \\
.0326 \\
.0649
\end{array}
$$

646.122

$$
\begin{aligned}
& x=.142+(.1627)(.174) \\
& +\quad .028 \\
& \quad .170
\end{aligned}
$$

Bot－Bushe＇s FDL MG result is mont easily eyplamed if the slow． EPSP（MG）actually has some f in the canty paste This would P位d the eek For，bon mot The late．

Trythis woth a pair of short chain $\operatorname{sog}(2) \cos (4)$

$$
\begin{aligned}
& \text { Slow }(\mathrm{mb})-\left[\begin{array}{l}
\text { angel. } \\
\text { Tmi } \tau \text { funt } 2.2 \mathrm{mV} \\
\text { miser }
\end{array}\right. \\
& .66 \text { to. } 75 \text { と } \\
& \begin{array}{ll}
\mathrm{mV} / \mathrm{msec} & 0.75 \\
\mathrm{mV} / \text { mee } / \mathrm{mV} & 0.80
\end{array} \\
& \text { ~4perを } \\
& \text { Fart (FDL) Canpl - } 1.55 \mathrm{mV} \\
& \text { Tinitifunk - } 1.07 \text { msec } \\
& -26.252 \\
& \text { mv/mine - } 2.1 \\
& m v / m \mathrm{mu} / \mathrm{mv} \text { - } 2.08 \sim 8510 \mathrm{proz}
\end{aligned}
$$

$$
\text { both (summites PSP) - }\left[\begin{array}{l}
\text { Ampd. } 2.26 \mathrm{mV} \\
\text { Tmi t peak } 1.10 \text { msec } \\
\text { mV } / \text { msec } \\
\text { mv/mue } / \mathrm{mV}-1.77
\end{array}\right.
$$

$1 / 20 / 66$
Distinguishny synoptic potentials computed for different distributions of synaptic conductance charge.

Disting nisk Synoptic Potentiok Compntal for doffer spotial distiaburom of syopiter Contuctance change.

1/18/66 li.45 PM.
Alec with free. C. Bishop dow trad el rues.
attarbed Poses lecture this wong : took notes. firtasitug
Talking offer luth with gore
Several investing founts come ow
(1) Equivalence closes, as forexample Real Numbers Cadrolyea in the vel umber system represents a class of many differew object which may be obtained in maxi differ w ways, sweet has hits of deffer Sequences.
(2) This point came obit of non- uniqueness of a fundamental Solution of a system of linear homo. diff. Equs (geiveral of secoutorder diffequr). Point is that there is a non-unppeners, bu ruth. focus is yon nibariances, the equivalence class of all such fundames'il solutions of the foo that They are all characterized by the same eigenvalues of serial are the same when transformed into canonical form.
(3). Then A mode point chow i ny nat attempting to prone that compaituntal solutions converge to P.D. \& BUP, fin tho 4 ain contour to solve the modified physical problem.

Dose's comment to this is that there is much modern moth That follows a somenho anologons opprooch.

Briefly - convergence in the domain of continuous fans may not le required anyway.
Que nay be satisfied with other closes of convergence dofins other closes of
Thus. Soboliev defines weak Solutions sonasuat as follows

Whereas normally we sech
a Sol which satisfies $L_{1}(u)=0$
he mayseete $L\left(u_{i j}\right)=\in_{y j}$
Subitho Ul is a sequence
for who h $\epsilon_{j} \longrightarrow 0$
The limit of up is colbd a weak solution bit this limit roy not, itself be strict of the onzinal problem.

F Hian other disection functional adralysis fuits that there are solutions in the integral serese Whoch are not stact solms of the differential equations. Luothor the differenticl equatrows ofton demand nore of a sotm Than we really need!, that is in the surse of continuity and differentiability.
Aypreving, bfore the thin of Aenton theilviz, there was almồ an hou balance between contimnors A discrate apprioovhes to unatiomatios. Aobleni Them, the balance swing heavily to thecantiminas of tremendons bevelopunts todplace. Hourees, phapiss of now the comysater of other fitors hove haigtoned rintern ni gothing anay from the restritions of the contiviors esp, suice These are of ten unrealistie anyway. To me, this is a valnable insir Cit beco reinforces the notion that fused

Tho physios sets around wothematical difficulties ty choosing oppropurate physical asnsyitrons.
of centañly, in biology a munch of physics, we donot vied the artificial idealization of perpes continuity. We are usually concerned with quoutitios That are neosured as amerocos (integuls) over firitevol of frit tine of the math. need not satisfy more resolution thauthis The rich has been to. develop rigorores nu thematies that gains by treen its off of the limitations of a fictitious serobichon that is too high.

Functional Anoynis is an ex ample. Sobohirs Weak solutions are ans the. foe commented that this hos the disdolvontage.
of crushns the drean of unificotion Thirn mothomatics.

I commented upor Bohr's complementerity priñaple. still achieve a nore general nuat in Which all thase would be various spsuial coses That could he relatod as equivolence classes.
The poin is, however/ that there eyist nany nothernetial Solutions which do not converge, bil sother, oscillote witdly when examinid a very lugh resolittor, bes wrich convenge perfedty $O_{\bullet} K$. When syamin of a Cower resolution which gires the integral over fricte region.

Predictions and Generalizations from the computed effects of synoptic conductance change at different soma-derbitic locations.

Dendritic location
Effect of dendritic location Eppecto of the
Comparisons he tween computed synaptic potentials

Synaptic potential compretations for various

Characteristics of synoptic potentials computed for various soma-dendritic distituntions of membrane conductance change.

Analyser Compo-) of Commented rysuptic potentials for

Advantoge ofs expts. with mathemotical model is that we con oftain ansmers toquestions that are very difficult to ask experimentally. Gereralizatrores \& nisigut can be oftainied.

Previously showed what happenslwhen a particulor (square) excitatary conductanee change is arsuld to occur at dit/eren locations.

Conclusions
$12117 / 65$

Es soon as one discards the old dogma synoptic activity in the

Nary new and interesting questions arise as soon as one discards the old dogma which held that synoptic activity delivered to the dendritic suspoce of a cauldron have no effect

Previous Theoretical studies have provided quantitar comparisons of simulated synaptic potentials

IQ. tumpdeme change measured with ipsp b. deloyed erobsent ΔZ with epsp.
pur II. AR present
Variaile change in epsp with polarson curnen ases effest on speufer nise note otepsp.

Boot III Autraturs spsp \& ipsp - variable opsp Thinnecourse of evohed a stum potentials misis, - homogemens, letrogen
wis If Expto with model.
effectoy dewhiter locatas for diflerevo conduntence time ames
goint I Put togther motmaurone dota model bnowledge.

Bargropy sham, epsp sum. Rinusually 95%
Sumeed
for amplitudes up to 8 mV max

Atbcame more luivor when the shavpone was mode latter.
Pastove in (3) 6
slow one in 6
range 4 to 8 mV for sumed ypop.
\therefore A should do some epsp .05 to cheak liveristy of same site of different sites.
(3) vo (8) for slow tians \mathcal{E}
pertopos (3) os (6)?

